The Metric System

Customary and international system (SI) units

kilometer centimeter

The International System of Units

What is a System of Measurement?

A system of measurement is a collection of units of measurement and rules relating them to each other.

- Must have base units defined for all major quantities that need to be measured (example: a foot).
- Must specify equivalency relationship for all additional units used to measure the same quantity (example: length can also be measured in inches or miles, defined as 1 foot = 12 inches, 1 mile = 5280 feet).

Systems of measurement have historically been important, regulated and defined for the purposes of science and commerce.

The Metric System

 is an internationally agreed decimal (based on power of 10) system of measurement originally introduced by France in 1799 as a unified, natural, universal system.

Modern "Metric system" term is a synonym for "SI" or the "International System of Units" (1960)—the official system of measurement used in science.

Metric System Basics

- The metric system was built around three base units that corresponded to a certain kind of measurement:
$>$ Length \rightarrow meter
$>$ Volume \rightarrow liter
$>$ Weight (Mass) \rightarrow gram
- The base units were derived from the natural world: the dimensions of the Earth and properties of water.
- Decimal multiplicative prefixes were applied to base units to make up the full range of metric system:
$>$ milli \mathbf{x} meter $=1 / 1000 \times$ meter $=$ millimeter
$>$ kilo \mathbf{x} gram $=1000 \times$ gram $=$ kilogram
$>$ micro \mathbf{x} liter $=1 / 1000,000 \times$ liter $=$ microliter
$>$ kilo \mathbf{x} meter $=1000 \times$ meter $=$ kilometer

Prefixes in Metric System

Prefix	Symbol	Factor	
tera	T	1000000000000	10^{12}
giga	G	1000000000	10^{9}
mega	M	1000000	10^{6}
kilo	k	1000	10^{3}
hecto	h	100	10^{2}
deca	da	10	10^{1}
(none)	(base unit)	1	10°
deci	d	0.1	10^{-1}
centi	c	0.01	10^{-2}
milli	m	0.001	10^{-3}
micro	μ	0.000001	10^{-6}
nano	n	0.000000001	10^{-9}
pico	p	0.000000000001	10^{-12}

What is the order of the metric system?

- King Henry Died by Drinking Chocolate Milk larger
$\left[\begin{array}{l}\text { - King: Kilo } \\ \text { - Henry: Hecto } \\ \text { - Died: Deca } \\ \text { - By: Base (m, L, g) } \\ \quad \text { - Drinking: Deci } \\ \quad \text { - Chocolate: Centi } \\ \text { - Milk: Milli }\end{array}\right.$

Original Definitions

1. Meter (length) - one ten millionth $(\mathbf{1} / \mathbf{1 0 , 0 0 0}, \mathbf{0 0 0})$ of the quarter of the Earth's meridian*.
*determined based on the 1792-1798 survey of the length of the Earth's meridian between Dunkirk ($51^{\circ} \mathrm{N}$) and Barcelona ($41^{\circ} \mathrm{N}$) through Paris.

2. Gram (mass) - the mass of one cubic centimeter of water at the melting point of water.
3. Second (time) - $1 / 86,400$ of a mean solar day (redefined later as the fraction 1/31,556,925.9747 of the tropical year 1900).
4. Degree Centigrade (temperature) - obtained by assigning $0^{\circ} \mathrm{C}$ to the freezing point of water and $100^{\circ} \mathrm{C}$ to the boiling point of water.

Prototypes

Historically, prototypes ("originals") of base units were kept in the Archives Nationales in France with copies manufactured and distributed among other countries - members of The Metre Convention of 1875 (and subsequent conventions).

Fundamental SI Units

As Metric System evolved into the SI system, seven mutually independent fundamental units have been selected:

1. Meter (length)
2. Kilogram (mass)
3. Second (time)
4. Kelvin (temperature)
5. Ampere (electric current)
6. Candela (luminous intensity)
7. Mole (count of elementary entities like atoms or molecules)

On May 20, 2019, all seven have been redefined based on fundamental physical constants. Δv_{c}

Metric Examples

Any US paper currency note (\$1, \$5, \$10, \$20) has a mass of 1 g ; the mass of a nickel is 5 g ; the mass of a penny is $\mathbf{2 . 5}$ grams.

The mass of a gold bar is precisely 1 kg .

The diameter

Typical airport runway length is 3.35 km; Boeing 767 jet is 64 m long.
 of a CD or a DVD is 12 cm; the diameter of the center hole is 15 mm .

Some Smaller (<1 m) Things

Some Bigger (>1 million m) Things

$10^{7} \mathrm{~m}$
$10^{9} \mathrm{~m}$
10^{13} m
$10^{21} \mathrm{~m}$

