Homework 15.
Oscillations

Generally, oscillation can be described as periodic (or. even more generally just
repetitive) variations of a certain parameter. Heartbeat, Earth rotation, pendulum, 11-year Sun
activity cycle, light — these are examples of oscillatory phenomena.

In which systems we can observe oscillatory behavior? To understand this let us consider
three systems in equilibrium (see Figure below):

Types of equilibrium

unstable stable neutral

If we slightly displace the ball which is on top of the hill (left picture) it will roll down
because the total net force will be directed from the equilibrium position. For the ball displaced
from the center of the bottom of a spherical bowl the force is directed back to the equilibrium
point. We will call such force as restoring force. In case of neutral equilibrium, no foree appear
and the ball just stay in new position (see Figure below).

mg

Systems in stable equilibrium can demonstrate oscillatory behavior.

We will be considering only periodic mechanical oscillations. May be a simplest example
of a mechanical oscillator is a mass attached to the coil spring. If we pull the mass and then let it
go, the coordinate of the mass will be changing in a periodical way around the equilibrium
position. The number of oscillations per unit time is called frequency (v). The unit of frequency
is 1Hz (Hertz) — one oscillation per second. It is named after German physicist Heinrich Rudolf
Hertz.



Heinrich Rudolf Hertz (1857-1894).

In some cases it is convenient to use angular frequency (@) the number of oscillations

(or rotations) per 2w seconds.
w=2m v (1)

The time which is necessary to complete one full oscillation is called period (T). It is
casy to see that T=1/v. Maximum deviation of the coordinate from the equilibrium point during
the oscillatory motion is called amplitude (A).

The oscillations are called “harmonic™ when the restoring force applied to the oscillating
object is proportional to the displacement of the object to the equilibrium point. The simplest
example of such a system is the mass m attached to the coil spring non a frictionless surface.
Restoring force in this case is :F=-kx (Hook’s law). where k 1s the elastic coefficient of the coil
spring, X is the displacement of the mass. So, using the second Newton's law we can write:

k
ma=-—-kx = ﬂ+;r=0. (2)

This 1s the equation of harmonic oscillation. We do not know vet how to solve such an equation.
The difficulty is that now the aceceleration a depends on the coordinate. Usually we worked with
a constant acceleration and used this acceleration to find the coordinate at any moment. Now the
acceleration changes from point to point. The acceleration & and the coordinate x are not
independent. The acceleration is the rate of change of the velocity while the velocity is the rate of
change of the coordinate. So the equation 2 can be solved, but we need calculus to do that. At
this point you have just to believe that this equation leads to periodic motion with the period:



T= 2;;\]% (3)

So whenever you see the equation of motion in the form of:
a+K-x=0 (o,

where a is the acceleration, x - coordinate and K is coefficient which does not depend on x
and time t, you can be sure that it describes periodic oscillations and the period is:

2w
r=x®

Example:

Let us consider the pendulum.
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The length of the pendulum is I, T is the tension force of the thread, point A 1s the equilibrium
position. The second Newton’s law for the vertical axis (positive direction is up) is:

ma,=Tcosa—mg (6)



here a, is the vertical component of the acceleration. m is the mass of the bob. For the horizontal
axis (positive direction is left to right) the second Newton's law is:

may=—Isina (7)

Segment |AC| = [ - sina is horizontal displacement x. So, we can write (7) as:
T
map = — X (8)

Here is very important point. Let us consider only very small deflections of the pendulum from
the equilibrium position, so angle & is very very small and the bob moves horizontally. So we
can take the vertical component of the acceleration equal to zero:

a,=a, a,=0 (9)

Moreover, for small angles we can further simplify the equations, because for small
anglessin @ & a, andeos @ = 1. You can check these expressions using calculator. T would like
you to memorize them. because they are very useful and widely applied in physies. So for the
vertical axis we have:

T-mg=0 (10)
For the horizontal axis the simplified expression of the second Newton's law is:
T .
ma = —-x (11)

We can find T from equation 10 and plug it to equation 11. Then we will divide both parts of the
equation 11 to m. The result is

a+Ex=0

The equation is valid for small deviation of the pendulum’s bob from the equilibrium point.

The oscillation period 1s:



Interesting and counterintuitive is that the oscillation period of the pendulum does not depends
on the bob’s mass.

Problem:

A tunnel 1s made along the Earth’s diameter. A stone is placed in the center of this tunnel. If we
slightly kick the stone along the direction of the tunnel the stone will oscillate about the center of
the tunnel. Calculate the period of oscillations if the average density of the Earth is 5.5 g-"cms.
(see Figure below).




