Motion at constant acceleration

- For motion at constant acceleration a, with no initial speed, the displacement after time t is:

$$
x=v_{\text {average }} t=\left(\frac{0+a t}{2}\right) \times t=\frac{a t^{2}}{2}
$$

For braking (motion with negative acceleration a), if it takes time t to stop, the initial speed is $-a t=|a| t$ (note that since we take absolute value, initial speed is positive), the displacement after time t is:

$$
\Delta x=v_{\text {average }} t=\left(\frac{|a| t+0}{2}\right) t=\frac{|a| t^{2}}{2}
$$

Homework 8

Problem 1.

How long would it take a rock to fall from the top of mount Everest to the ground at sea level? The height of mount Everest is about 8850 m . Take free fall acceleration to be $10 \mathrm{~m} / \mathrm{s}^{2}$.

Problem 2.

A car manufacturing company is testing all its new cars in extreme driving conditions according to the same procedure. First, the car accelerates with acceleration $5 \mathrm{~m} / \mathrm{s}^{2}$ until it reaches speed $40 \mathrm{~m} / \mathrm{s}$. Then is goes one minute with that speed. Finally, the driver brakes with acceleration $-8 \mathrm{~m} / \mathrm{s}^{2}$ coming to a full stop. How long should the testing track be?

Problem 3.

When driving a car at night with low beam headlights on, the driver can see the road up to 30 meters ahead. The driver suddenly sees a deer crossing the road ahead within the headlight reach. He immediately slams the brakes and the car starts braking with acceleration $-5 \mathrm{~m} / \mathrm{s}^{2}$. At what maximal initial speed the car can still avoid hitting the deer? Convert your answer to miles per hour.

