
March 17, 2024        Math 9 

Geometry.  

Solving vector problems. 

Problem. Prove that if vectors �⃗� and �⃗⃗� satisfy ‖�⃗� + �⃗⃗�‖ = ‖�⃗� − �⃗⃗�‖, then �⃗� ⊥ �⃗⃗�.  

Solution 1. Consider the vector addition 
parallelogram 𝐴𝐵𝐶𝐷 shown in the Figure. Since its 

diagonals have equal length, |𝐴𝐶| = ‖�⃗� + �⃗⃗�‖ =

‖�⃗� − �⃗⃗�‖ = |𝐵𝐷|, the parallelogram is a rectangle (this 

is because the diagonals divide it into pairs of 
congruent isosceles triangles).   

Solution 2. (�⃗� + �⃗⃗�)2  −  (�⃗� − �⃗⃗�)2  =  4(�⃗� ∙ �⃗⃗�) =  4 𝑎𝑏 cos 𝐷𝐴�̂�
 

⇒ cos 𝐷𝐴�̂� = 0
 

⇒ 𝐷𝐴�̂� = 90°.  

Problem. Show that for any two non-collinear vectors 

�⃗� and �⃗⃗� in the plane and any  third vector 𝑐 in the 
plane, there exist one and only one pair of real 
numbers (𝑥, 𝑦) such that 𝑐 can be represented as 𝑐 =

𝑥�⃗� + 𝑦�⃗⃗�. 

Solution. Let us draw parallelogram 𝑂𝐴𝐶𝐵, whose diagonal is the segment 𝑂𝐶, 

𝑂𝐶⃗⃗⃗⃗⃗⃗ = 𝑐, and the sides OA and OB are parallel to the vectors �⃗� and �⃗⃗�, 

respectively. Since 𝑂𝐴⃗⃗⃗⃗ ⃗⃗ ||�⃗�, there exists number x, such that 𝑂𝐴⃗⃗⃗⃗ ⃗⃗ = 𝑥 ∙ �⃗�. 

Similarly, there exists number y, such that 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗ = 𝑦 ∙ �⃗⃗�. Then,  

𝑂𝐶⃗⃗⃗⃗⃗⃗ = 𝑂𝐴⃗⃗ ⃗⃗ ⃗⃗ + 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗ = 𝑥 ∙ �⃗� + 𝑦 ∙ �⃗⃗�.  

Problem. Derive the formula for the scalar (dot) 

product of the two vectors, �⃗�(𝑥𝑎, 𝑦𝑎) and �⃗⃗�(𝑥𝑏, 𝑦𝑏), 

(�⃗� ∙ �⃗⃗�) = 𝑥𝑎𝑥𝑏 + 𝑦𝑎𝑦𝑏, using their representation via 

two perpendicular vectors of unit length, 𝑒𝑥 and 𝑒𝑦, 

directed along the 𝑋 and the 𝑌 axis, respectively. 
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Solution. It is clear from the Figure that (�⃗� ∙ �⃗⃗�) = 𝑎𝑏 cos 𝛼 = 𝑎𝑏 cos(𝐵𝑂�̂� −

𝐴𝑂�̂�) = 𝑎𝑏 cos 𝐵𝑂�̂� cos 𝐴𝑂�̂� + 𝑎𝑏 sin 𝐵𝑂�̂� sin 𝐴𝑂�̂� = 𝑎𝑥𝑏𝑥 + 𝑎𝑦𝑏𝑦.  

Problem. Vectors 𝑂𝐴⃗⃗⃗⃗ ⃗⃗ , 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗  and 𝑂𝐶⃗⃗⃗⃗⃗⃗  are represented by the radial segments 
directed from the centre O of the circle to points A, b 
and C on the circle (see Figure). What are the angles 
𝐴𝑂�̂�, 𝐴𝑂�̂� and 𝐶𝑂�̂�, if 

 𝑂𝐶⃗⃗⃗⃗⃗⃗ = 𝑂𝐴⃗⃗ ⃗⃗ ⃗⃗ − 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗   

𝑂𝐶⃗⃗⃗⃗⃗⃗ = 𝑂𝐴⃗⃗ ⃗⃗ ⃗⃗ + 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗   

Solution. It is clear from the Figure that if 𝑂𝐶⃗⃗⃗⃗⃗⃗ = 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗ − 𝑂𝐴⃗⃗ ⃗⃗ ⃗⃗ = 𝐵𝐴⃗⃗⃗⃗ ⃗⃗ , then 𝐴𝑂�̂� =
𝐴𝑂�̂� = 60° and 𝐶𝑂�̂� = 120°. In the second case the situation looks similar to 
that in the figure, but with points 𝐵 and 𝐶 interchanged. Therefore, 𝐴𝑂�̂� =
120° and 𝐴𝑂�̂� = 𝐶𝑂�̂� = 60°.  

Problem. Vectors 𝐴𝐴′⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝐵𝐵′⃗⃗⃗⃗⃗⃗⃗⃗  and 𝐶𝐶′⃗⃗ ⃗⃗ ⃗⃗⃗ are represented by the 
internal bisectors in the triangle ABC, directed from each 
vertex to the point on the opposite side (see figure). 

Express the sum, 𝐴𝐴′⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝐵𝐵′⃗⃗⃗⃗⃗⃗⃗⃗ + 𝐶𝐶′⃗⃗ ⃗⃗ ⃗⃗⃗ through vectors 𝐴𝐵⃗⃗⃗⃗ ⃗⃗  and 

𝐴𝐶⃗⃗⃗⃗⃗⃗  (and the sides of the triangle, |𝐴𝐵|  =  𝑐, |𝐵𝐶|  =  𝑎, 
|𝐶𝐴|  =  𝑏). For what triangles ABC does this sum equal 0?  

Problem. Given three vectors, �⃗�, �⃗⃗� and 𝑐, show that vector 𝑑 = (�⃗⃗� ∙ 𝑐)�⃗� −

(�⃗� ∙ 𝑐)�⃗⃗� is perpendicular to 𝑐.  

Solution. Let us find the scalar product (𝑑 ∙ 𝑐),  

(𝑑 ∙ 𝑐) = (((�⃗⃗� ∙ 𝑐)�⃗� − (�⃗� ∙ 𝑐)�⃗⃗�) ∙ 𝑐) = (�⃗⃗� ∙ 𝑐)(�⃗� ∙ 𝑐) − (�⃗� ∙ 𝑐)(�⃗⃗� ∙ 𝑐) = 0, 

Which means that 𝑑 = (�⃗⃗� ∙ 𝑐)�⃗� − (�⃗� ∙ 𝑐)�⃗⃗� is perpendicular to 𝑐. 

Problem. Given triangle 𝐴𝐵𝐶, find the locus of points 𝑀 such that (𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ∙ 𝐶𝑀⃗⃗⃗⃗ ⃗⃗⃗) +

(𝐵𝐶⃗⃗⃗⃗⃗⃗ ∙ 𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗) + (𝐶𝐴⃗⃗⃗⃗⃗⃗ ∙ 𝐵𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗) = 0. Using this finding, prove that three altitudes of 
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the triangle 𝐴𝐵𝐶 are concurrent (i.e. all three intersect at a common crossing 
point, the orthocenter of the triangle 𝐴𝐵𝐶).  

Solution. Let 𝑀 be an arbitrary point on the plane. 
Express (see Figure)  

𝐴𝐵⃗⃗⃗⃗ ⃗⃗ = 𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗ − 𝐵𝑀⃗⃗⃗⃗ ⃗⃗ ⃗, 𝐵𝐶⃗⃗⃗⃗⃗⃗ = 𝐵𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ − 𝐶𝑀⃗⃗⃗⃗⃗⃗⃗, 𝐶𝐴⃗⃗⃗⃗⃗⃗ = 𝐶𝑀⃗⃗⃗⃗⃗⃗⃗ − 𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗.  

Then, obviously,  

(𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ∙ 𝐶𝑀⃗⃗⃗⃗ ⃗⃗⃗) + (𝐵𝐶⃗⃗⃗⃗⃗⃗ ∙ 𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗) + (𝐶𝐴⃗⃗⃗⃗⃗⃗ ∙ 𝐵𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗)

= (𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗ ∙ 𝐶𝑀⃗⃗⃗⃗ ⃗⃗⃗) − (𝐵𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ ∙ 𝐶𝑀⃗⃗⃗⃗ ⃗⃗⃗) + 

(𝐵𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ ∙ 𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗) − (𝐶𝑀⃗⃗⃗⃗⃗⃗⃗ ∙ 𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗) + (𝐶𝑀⃗⃗⃗⃗⃗⃗⃗ ∙ 𝐵𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗) − (𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗ ∙ 𝐵𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗) = 0  

Hence, all points 𝑀 on the plane satisfy the given vector condition.  

Now, let 𝐻 be the crossing point of the two altitudes of the triangle, 𝐴𝐴1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and 

𝐵𝐵1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . Then, (𝐵𝐶⃗⃗⃗⃗⃗⃗ ∙ 𝐴𝐻⃗⃗⃗⃗⃗⃗⃗) + (𝐶𝐴⃗⃗⃗⃗⃗⃗ ∙ 𝐵𝐻⃗⃗⃗⃗⃗⃗⃗) = 0 by the definition of an altitude. 

However, we have just proved that for any point, 𝐻 included,  (𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ∙ 𝐶𝐻⃗⃗ ⃗⃗ ⃗⃗ ) +

(𝐵𝐶⃗⃗⃗⃗⃗⃗ ∙ 𝐴𝐻⃗⃗⃗⃗⃗⃗⃗) + (𝐶𝐴⃗⃗⃗⃗⃗⃗ ∙ 𝐵𝐻⃗⃗⃗⃗⃗⃗⃗) = 0. Therefore, (𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ∙ 𝐶𝐻⃗⃗ ⃗⃗ ⃗⃗ ) = 0, and 𝐶𝐶1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝜆𝐶𝐻⃗⃗ ⃗⃗ ⃗⃗  is also 

an altitude. 

Problem. Let 𝑂 be the circumcenter (a center of the circle circumscribed 
around) and 𝐻 be the orthocenter (the intersection point of the three 

altitudes) of a triangle 𝐴𝐵𝐶. Prove that, 𝐻𝐴⃗⃗⃗⃗⃗⃗⃗ + 𝐻𝐵⃗⃗⃗⃗⃗⃗⃗ + 𝐻𝐶⃗⃗ ⃗⃗ ⃗⃗ = 2𝐻𝑂⃗⃗⃗⃗⃗⃗⃗.  

Solution. 

Let 𝐴𝐴1, 𝐵𝐵1 and 𝐶𝐶1, be the diameters of the 
circumcircle of the triangle 𝐴𝐵𝐶. Then, 
quadrilaterals 𝐴𝐵𝐴1𝐵1 and 𝐵𝐶𝐵1𝐶1 are 
rectangles (they are made of pairs of inscribed 
right triangles whose hypotenuse are the 
corresponding diameters), and AHCB1 is 

parallelogram. Therefore, 𝐻𝐶⃗⃗ ⃗⃗ ⃗⃗ = 𝐴𝐵1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝐵𝐴1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ and 

𝐻𝐴⃗⃗⃗⃗⃗⃗⃗ = 𝐶𝐵1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝐵𝐶1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . Now, 𝐻𝐵⃗⃗⃗⃗⃗⃗⃗ + 𝐻𝐶⃗⃗ ⃗⃗ ⃗⃗ = 𝐻𝑂⃗⃗⃗⃗⃗⃗⃗ + 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗ +

𝐻𝑂⃗⃗⃗⃗⃗⃗⃗ + 𝑂𝐶⃗⃗⃗⃗⃗⃗ = 2𝐻𝑂⃗⃗⃗⃗⃗⃗⃗ + 𝐵1𝑂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑂𝐶⃗⃗⃗⃗⃗⃗ = 2𝐻𝑂⃗⃗⃗⃗⃗⃗⃗ + 𝐵1𝐶⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = 2𝐻𝑂⃗⃗⃗⃗⃗⃗⃗ − 𝐻𝐴⃗⃗⃗⃗⃗⃗⃗.  
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Vector approach to the Archimedes method of center of mass. 

Let us assume that a system of geometric points, 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛 has masses 
𝑚1, 𝑚2, 𝑚3, … , 𝑚𝑛 associated with each point. The total mass of the system is 
𝑚 = 𝑚1 + 𝑚2 + 𝑚3 + ⋯ + 𝑚𝑛. By definition, the center of mass of such 
system is point 𝑀, such that  

𝑚1 ∙ 𝑀𝑋1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝑚2 ∙ 𝑀𝑋2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝑚3 ∙ 𝑀𝑋3
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + ⋯ + 𝑚𝑛 ∙ 𝑀𝑋𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 0 

For the case of just two massive points, {𝑚1, 𝑋1} and {𝑚2, 𝑋2} this reduces to 

𝑚1 ∙ 𝑀𝑋1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = −𝑚2 ∙ 𝑀𝑋2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, the Archimedes famous lever rule.  

Heuristic properties of the Center of Mass. 

1. Every system of finite number of point masses 
has unique center of mass (COM).  

2. For two point masses, 𝑚1 and 𝑚2, the COM 
belongs to the segment connecting these 
points; its position is determined by the 
Archimedes lever rule: the point’s mass times 
the distance from it to the COM is the same for 
both points, 𝑚1𝑑1 = 𝑚2𝑑2.  

3. The position of the system’s center of mass does 
not change if we move any subset of point 
masses in the system to the center of mass of 
this subset. In other words, we can replace any 
number of point masses with a single point 
mass, whose mass equals the sum of all these 
masses and which is positioned at their COM.  

Given the coordinate system with the origin O, we can specify position of any 

geometric point A by the vector, 𝑂𝐴⃗⃗⃗⃗ ⃗⃗  connecting the origin O with this point. 
For the system of point masses, 𝑚1, 𝑚2, 𝑚3, … , 𝑚𝑛, located at geometric points 

𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛, position of a point mass 𝑚𝑖  is specified by the vector 𝑂𝑋𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

connecting the origin with point 𝑋𝑖  where the mass is located.  

It can be easily proven using the COM definition given above that the position 
of the COM, 𝑀, of the system is given by 



𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ =
𝑚1∙𝑂𝑋1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗+𝑚2∙𝑂𝑋2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗+𝑚3∙𝑂𝑋3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗+⋯+𝑚𝑛∙𝑂𝑋𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑚1+𝑚2+𝑚3+⋯+𝑚𝑛
, or, 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ =
𝑚1 ∙ 𝑂𝑋1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑚2 ∙ 𝑂𝑋2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ + 𝑚3 ∙ 𝑂𝑋3

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ + ⋯ + 𝑚𝑛 ∙ 𝑂𝑋𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑚
 

An important property of the COM immediately follows from the above. If we 
add a point (𝑚𝑛+1, 𝑋𝑛+1) to the system, the resultant COM is the COM of the 
system of two points: the new point and the point (𝑚 , 𝑀) with mass 𝑚 placed 
at the COM of the first n points,  

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑛+1) =
𝑚 ∙ 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝑚𝑛+1 ∙ 𝑂𝑋𝑛+1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑚 + 𝑚𝑛+1
 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑛+1) =
𝑚1 ∙ 𝑂𝑋1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑚2 ∙ 𝑂𝑋2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ + 𝑚3 ∙ 𝑂𝑋3

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ + ⋯ + 𝑚𝑛 ∙ 𝑂𝑋𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗+𝑚𝑛+1 ∙ 𝑂𝑋𝑛+1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑚1 + 𝑚2 + 𝑚3 + ⋯ + 𝑚𝑛 + 𝑚𝑛+1
 

Problem. Prove that the medians of an arbitrary triangle 𝐴𝐵𝐶 are concurrent 
(cross at the same point 𝑀).  

Problem. Prove that the altitudes of an 
arbitrary triangle 𝐴𝐵𝐶 are concurrent (cross 
at the same point 𝐻).  

Problem. Prove that the bisectors of an 
arbitrary triangle 𝐴𝐵𝐶 are concurrent (cross 
at the same point 𝑂).  

Problem. Prove Ceva’s theorem.  A
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