Homework for March 17, 2024.

Algebra.

Review the classwork handout. Try solving the following problems. Remember: you do not necessarily need to solve all problems, just solve as many as you can within the time you can dedicate to Math 9 homework.

- 1. From the picture, find in which interval(s) the function y = f(x)
 - a. is monotonic
 - b. has the same sign
- 2. Find all possible values of *a* such that equation $x^2 + ax + 9 = 0$ has two different roots, both of which are less than -1.
- 3. Draw graphs of the following functions

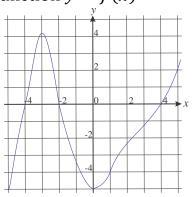
a.
$$y = \left| \frac{1}{x-2} + 1 \right|$$

b. $y = \frac{1}{|x|-2} + 1$

- 4. Solve the following equations
 - a. (Skanavi 7.141) $3 \cdot 4^x + \frac{1}{3} \cdot 9^{x+2} = 6 \cdot 4^x \frac{1}{2} \cdot 9^{x+1}$
 - b. (Skanavi 7.143) $\sqrt{\log_x \sqrt{x}} = -\log_x 5$
 - c. (Skanavi 7.153) $\frac{\log_2(9-2^x)}{3-x} = 1$

 - d. (Skanavi 7.160) $\log_a x + \log_{a^2} x + \log_{a^3} x = 11$ e. (Skanavi 7.184) $2^{x-1} + 2^{x-4} + 2^{x-2} = 6.5 + 3.25 + 1.625 + \cdots$
 - f. (Skanavi 7.190) $9^x + 6^x = 2^{2x+1}$
 - g. (Skanavi 7.197) $4^{\log x+1} 6^{\log x} 2 \cdot 3^{\log x^2+2} = 0$
 - h. (Skanavi 7.299) $(x^2 x 1)^{x^2 1} = 1$
 - i. (Skanavi 7.304) find integer root: $\log_{\sqrt{x}}(x + 12) = 8 \log_{x+12} x$
 - j. (Skanavi 7.308) $\log_{x+3}(3 \sqrt{1 2x + x^2}) = \frac{1}{2}$
- 5. (Skanavi 7.277) Equation $4^{x} + 10^{x} = 25^{x}$ has a single root. Find this root. Is it positive or negative? Is it larger or less than 1?
- 6. (Skanavi 7.280) Show that:

$$\log_3 2 \cdot \log_4 3 \cdot \log_5 4 \cdot \log_6 5 \cdot \log_7 6 \cdot \log_8 7 = \frac{1}{3}$$

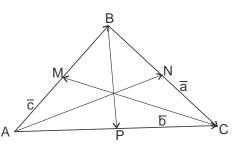


Geometry.

Please, complete the previous homework assignments from this year. Review the classwork handout on vectors. Solve the following problems.

Problems.

- 1. In a triangle ABC, vectors \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{BC} (**c**, **b** and **a**) are the sides. \overrightarrow{AN} , \overrightarrow{CM} and \overrightarrow{BP} are the medians.
 - a. Express vectors \overrightarrow{AN} , \overrightarrow{CM} and \overrightarrow{BP} through vectors **c**, **b** and **a**.



- b. Find the sum of vectors \overrightarrow{AN} , \overrightarrow{CM} and \overrightarrow{BP} .
- 2. Solve the same problem for bisectors \overrightarrow{AN} , \overrightarrow{CM} and \overrightarrow{BP} in a triangle *ABC*.
- 3. Coxeter, Greitzer, problem #9 to Sec. 2.1 (p. 31): How far away is the horizon as seen from the top of a mountain 1 mile high? (Assume the Earth to be a sphere of diameter 7920 miles.)
- 4. In a rectangle *ABCD*, A_1 , B_1 , C_1 and D_1 are the mid-points of sides *AB*, *CD*, *BC* and *DA*, respectively. *M* is the crossing point of the segments A_1B_1 , and C_1D_1 , connecting two pairs of midpoints.
 - a. Express vector $\overrightarrow{A_1M}$ through \overrightarrow{AB} , \overrightarrow{BC} and \overrightarrow{CD} .
 - b. Prove that *M* is the mid-point of segments, A_1B_1 and C_1D_1 , i.e. $|A_1M| = |MB_1|$ and $|C_1M| = |MD_1|$.
- 5. In a parallelogram *ABCD*, find $\overrightarrow{AB} + \overrightarrow{BD} 2\overrightarrow{AD}$.
- 6. *M* is a crossing point of the medians in a triangle *ABC*. Prove that $\overrightarrow{AM} = \frac{1}{3} (\overrightarrow{AB} + \overrightarrow{AC}).$
- 7. For three points, A(-1,3), B(2,-5) and C(3,4), find the (coordinates of) following vectors,
 - a. $\overrightarrow{AB} \overrightarrow{BC}$
 - b. $\overrightarrow{AB} + \overrightarrow{CB} + \overrightarrow{AC}$

c.
$$\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} + \frac{1}{3}\overrightarrow{CA}$$

8. For two triangles, *ABC* and $A_1B_1C_1$, $\overrightarrow{AA_1} + \overrightarrow{BB_1} + \overrightarrow{CC_1} = 0$. Prove that medians of these two triangles cross at the same point *M*.