HW2 is Due October 8

This week we reviewed various types of problems encountered in factorization and simplification of algebraic identities.

Some basic algebraic rules for you to remember (similar to last homework set):

1. Exponents Laws

If *a* is a real number, *n* is a positive integer $a^n = a \times a \times \cdots \times a$

n-times

$$a^{0} = 1$$

 $a^{m} \times a^{n} = a^{m+n}$
 $a^{m} \div a^{n} = a^{m-n}$
 $(ab)^{n} = a^{n}b^{n}$
 $\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}$
 $a^{-n} = \frac{1}{a^{n}}$
 $(a^{m})^{n} = a^{mn}$

2. Radicals

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$
$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$

3. Main Algebraic Identities

$$(a + b)^{2} = a^{2} + 2ab + b^{2}$$
$$(a - b)^{2} = a^{2} - 2ab + b^{2}$$
$$a^{2} - b^{2} = (a - b)(a + b)$$

Homework problems on next page

Instructions: Please always write solutions on a *separate sheet of paper*. Solutions should include explanations. I want to see more than just an answer: I also want to see how you arrived at this answer, and

some justification why this is indeed the answer. So **please include sufficient explanations**, which should be clearly written so that I can read them and follow your arguments.

1. Simplify

a.
$$\sqrt{\frac{56}{13}} \cdot \sqrt{\frac{26}{7}} =$$
 b. $\sqrt{48} =$ c. $\frac{\sqrt{48}}{\sqrt{15}} =$

- 2. Express the following expressions in the form $2^r 3^s a^m b^n$:
 - a. $8a^3b^2(27a^3)(2^5ab) =$
 - b. $3^2(2ab)^3(16a^2b^5)(24b^2a) =$
 - c. $16a^2b^3(6ab^4)(ab^2)^3 =$
- 3. Expand as sums of powers of *x*:
 - a. $(2x+5)^2 =$
 - b. $(2-4x)^2 =$
 - c. $(1-2x)^2 =$

4. Factor (i.e., write as a product) the following expressions:

- g. $a^2 b^2 10b 25$ a. $4x^2 + 8xy + 4y^2$ b. $9x^2 - 25$ h. $x^4 + 4$ i. $p^4 + 4z^{4n}$ c. $(x-2)^2 - (y+3)^2$ j. $a^2 + 3a + 2$ d. $256 - a^8 b^8$ k. $m^2 - m - 12$ I. $m^2 - 5/6 m + 1/6$ e. $(x-2)^2 - 10(x$ m. $t^2 - 3/2t + 1/2$ 2) + 25n. 6 a² - 25 a + 24 f. $3x^3 - x^2y +$ 0. $7x^{2} + 48x - 7$ $6x^2y - 2xy^2 +$ $3xv^2 - v^3$
- 5. Solve the following equations :
 - a. 5(x + 1) = 3x + 2b. $(x^2 - 1)(x + 2) = 0$ c. $\frac{x+2}{x+2} = 2$

d. (x-3)(x+4) = 0e. $x^2 + 4x = 0$ f. $x^3 + 4x = 0$

- 6. Prove:
 - a. $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$

b. $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

c. $Find(a + b)^4$, $(a - b)^4$ using the previous results

7. Amanda has an average of 92 on her seven tests. What should she get on her 8*th* test to have an average of 93?