Algebra.

Review the last algebra classwork handouts. Solve the unsolved problems from the previous homeworks. Try solving the following problems.

- 1. Assume that the set of rational numbers \mathbb{Q} is divided into two subsets, $\mathbb{Q}_{<}$ and $\mathbb{Q}_{>}$, such that all elements of $\mathbb{Q}_{>}$ are larger than any element of $\mathbb{Q}_{<}$: $\forall a \in \mathbb{Q}_{<}, \forall b \in \mathbb{Q}_{>}, a < b$.
 - a. Prove that if $\mathbb{Q}_{>}$ contains the smallest element, $\exists b_0 \in \mathbb{Q}_{>}, \forall b \in \mathbb{Q}_{>}, b_0 \leq b$, then $\mathbb{Q}_{<}$ does not contain the largest element
 - b. Prove that if $\mathbb{Q}_{<}$ contains the largest element, $\exists a_0 \in \mathbb{Q}_{<}, \forall a \in \mathbb{Q}_{<}, a \leq a_0$, then $\mathbb{Q}_{>}$ does not contain the smallest element
 - c. Present an example of such a partition, where neither $\mathbb{Q}_>$ contains the smallest element, nor $\mathbb{Q}_<$ contains the largest element
- 2. Prove the following properties of countable sets. For any two countable sets, *A*, *B*,
 - a. Union, $A \cup B$, is also countable, $((c(A) = \aleph_0) \land (c(B) = \aleph_0))$ $\Rightarrow (c(A \cup B) = \aleph_0)$
 - b. Product, $A \times B = \{(a, b), a \in A, b \in B\}$, is also countable, $((c(A) = \aleph_0) \land (c(B) = \aleph_0)) \Rightarrow (c(A \cup B) = \aleph_0)$
 - c. For a collection of countable sets, $\{A_n\}$, $c(A_n) = \aleph_0$, the union is also countable, $c(A_1 \cup A_2 \dots \cup A_n) = \aleph_0$
- 3. Let *W* be the set of all "words" that can be written using the alphabet consisitng of 26 lowercase English letters; by a "word", we mean any (finite) sequence of letters, even if it makes no sense for example, abababaaaaa. Prove that *W* is countable. [Hint: for any *n*, there are only finitely many words of length *n*.]
- 4. Compare the following real numbers (are they equal? which is larger?)
 - a. 1.33333... = 1.(3) and 4/3
 - b. 0.09999... = 0.0(9) and 1/10
 - c. 99.99999... = 99.(9) and 100
 - d. $\sqrt[2]{2}$ and $\sqrt[3]{3}$
- 5. Simplify the following real numbers. Are these numbers rational? (hint: you may use the formula for an infinite geometric series).

- a. 1/1.1111...=1/1.1(1)
- b. 2/1.2323...=2/1.23(23)
- c. 3/0.123123...=3/0.123(123)
- 6. Write the following rational decimals in the binary system (hint: you may use the formula for an infinite geometric series).
 - a. 1/8
 - b. 2/7
 - c. 0.1
 - d. 0.33333... = 0.(3)
 - e. 0.13333... = 0.1(3)
- 7. Try proving the following properties of real numbers and arithmetical operations on them using definition of a real number as the Dedekind section and the validity of these properties for rational numbers.

Ordering and comparison.

- 1. \forall *a*, *b* ∈ \mathbb{R} , one and only one of the following relations holds
 - a = b
 - *a* < *b*
 - *a* > *b*
- 2. $\forall a, b \in \mathbb{R}, \exists c \in \mathbb{R}, (c > a) \land (c < b), i.e. a < c < b$
- 3. Transitivity. $\forall a, b, c \in \mathbb{R}, \{(a < b) \land (b < c)\} \Rightarrow (a < c)$
- 4. Archimedean property. $\forall a, b \in \mathbb{R}, a > b > 0, \exists n \in \mathbb{N}$, such that a < nb

Addition and subtraction.

- $\forall a, b \in \mathbb{R}, a + b = b + a$
- $\forall a, b, c \in \mathbb{R}, (a + b) + c = a + (b + c)$
- $\forall a \in \mathbb{R}, \exists 0 \in \mathbb{R}, a + 0 = a$
- $\forall a \in \mathbb{R}, \exists -a \in \mathbb{R}, a + (-a) = 0$
- $\forall a, b \in \mathbb{R}, a b = a + (-b)$
- $\forall a, b, c \in \mathbb{R}, (a < b) \Rightarrow (a + c < b + c)$

Geometry.

Review the previous classwork notes. Solve the problems below and the remaining problems from the previous homework (some problems below are repeated – skip the ones you have already done).

Problems.

- 1. Review derivation of the equation describing an ellipse and derive in a similar way,
 - a. Equation of an ellipse, defined as the locus of points P for which the distance to a given point (focus F_2) is a constant fraction of the perpendicular distance to a given line, called the directrix, $|PF_2|/|PD| = e < 1.$
 - b. Equation of a hyperbola, defined as the locus of points for which the ratio of the distances to one focus and to a line (called the directrix) is a constant e. However, for a hyperbola it is larger than 1, $|PF_2|/|PD| = e > 1.$
- Find (describe) set of all points formed by the centers of the circles that are tangent to a given circle of radius *r* and a line at a distance *d* > *r* from its center, *O*.
- 3. Using the method of coordinates, prove that the geometric locus of points from which the distances to two given points have a given ratio, $q \neq 1$, is a circle.
- 4. Find the equation of the locus of points equidistant from two lines, y = ax + b and y = mx + n, where a, b, m, n are real numbers.
- 5. Find the distance between the nearest points of the circles,

a.
$$(x-2)^2 + y^2 = 4$$
 and $x^2 + (y-1)^2 = 9$
b. $(x+3)^2 + y^2 = 4$ and $x^2 + (y-4)^2 = 9$
c. $(x-2)^2 + (y+1)^2 = 4$ and $(x+1)^2 + (y-3)^2 = 5$
d. $(x-a)^2 + y^2 = r_1^2$ and $x^2 + (y-b)^2 = r_2^2$