
January 28, 2024        Math 9 

Geometry.  

Ellipse. Hyperbola. Parabola (continued).  

Alternate definitions of ellipse, hyperbola and parabola: Tangent circles.  

Ellipse is the locus of centers of all circles 
tangent to two given nested circles (𝐹1, 𝑅) and 
(𝐹2, 𝑟). Its foci are the centers of these given 
circles, 𝐹1 and 𝐹2, and the major axis equals the 
sum of the radii of the two circles, 2𝑎 =  𝑅 + 𝑟 
(if circles are externally tangential to both given 
circles, as shown in the figure), or the difference 
of their radii (if circles contain smaller circle 
(𝐹2, 𝑟).). 

Consider circles (𝐹1, 𝑅)  and (𝐹2, 𝑟). that are not 
nested. Then the loci of the centers O of circles 
externally tangent to these two satisfy |𝑂𝐹1|  −
 |𝑂 𝐹2|  =  𝑅 −  𝑟. 

Hyperbola is the locus of the centers of circles 
tangent to two given non-nested circles. Its foci 
are the centers of these given circles, and the 
vertex distance 2𝑎 equals the difference in radii 
of the two circles.  

As a special case, one given circle may be a point located at one focus; since a 
point may be considered as a circle of zero radius, the other given circle—
which is centered on the other focus—must have radius 2𝑎. This provides a 
simple technique for constructing a hyperbola.  

Exercise. Show that it follows from the above definition that a tangent line to 
the hyperbola at a point 𝑃 bisects the angle formed with the two foci, i.e., the 
angle F1PF2. Consequently, the feet of perpendiculars drawn from each focus 
to such a tangent line lie on a circle of radius 𝑎 that is centered on the 
hyperbola's own center.  
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If the radius of one of the given circles is zero, then it shrinks to a point, and if 
the radius of the other given circle becomes infinitely large, then the “circle” 
becomes just a straight line. 

Parabola is the locus of the centers of circles passing through a given point 
and tangent to a given line. The point is the focus of the parabola, and the line 
is the directrix.  

Alternate definitions of ellipse, hyperbola and parabola: Directrix and Focus. 

Parabola is the locus of points such that the ratio of the distance to a given 
point (focus) and a given line (directrix) equals 1.  

Ellipse can be defined as the locus of points P for which the distance to a given 
point (focus F2) is a constant fraction of the perpendicular distance to a given 
line, called the directrix, |𝑃𝐹2|/|𝑃𝐷|  =  𝑒 < 1. 

Hyperbola can also be defined as 
the locus of points for which the 
ratio of the distances to one focus 
and to a line (called the directrix) 
is a constant e. However, for a 
hyperbola it is larger than 1, 
|𝑃𝐹2|/|𝑃𝐷|  =  𝑒 >  1. This 
constant is the eccentricity of the 
hyperbola. By symmetry a 
hyperbola has two directrices, 
which are parallel to the conjugate 
axis and are between it and the tangent to the hyperbola at a vertex.  

In order to show that the above definitions indeed those of an ellipse and a 
hyperbola, let us obtain relation between the x and y coordinates of a point P 
(𝑥, 𝑦) satisfying the definition. Using axes shown in the Figure, with focus F2 
on the X axis at a distance l from the origin and choosing the Y-axis for the 
directrix, we have 

√(𝑥 − 𝑙)2 + 𝑦2

𝑥
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(𝑥 − 𝑙)2 + 𝑦2 = (𝑒𝑥)2 
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𝑥2(1 − 𝑒2) − 2𝑙𝑥 + 𝑙2 + 𝑦2 = 0 
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Finally, we thus obtain, 

(𝑥 −
𝑙

1 − 𝑒2)2

𝑒2𝑙2

(1 − 𝑒2)2

+
𝑦2

𝑒2𝑙2

1 − 𝑒2

= 1 

Which is the equation of an ellipse for 1 − 𝑒2 > 0 and of a hyperbola for 1 −

𝑒2 < 0. In each case the center is at 𝑥 = 𝑥0 =
𝑙

1−𝑒2
 and 𝑦 = 𝑦0 = 0, and the 

semi-axes are 𝑎 =
𝑒  𝑙 

(1−𝑒2) 
 and 𝑏 =

𝑒  𝑙 

√|1−𝑒2|
, which brings the equation to a 

canonical form,  
(𝑥 − 𝑥0)2

𝑎2
±

(𝑦 − 𝑦0)2

𝑏2
= 1 

We also obtain the following relations between the eccentricity e and the ratio 

of the semi-axes, a/b:  
𝑏

𝑎
= √|1 − 𝑒2|, or, 𝑒 = √1 ± (

𝑏

𝑎
)

2
, where plus and minus 

sign correspond to the case of a hyperbola and an ellipse, respectively.  

Curves of the second degree. 

A curve of the second degree is a set of points whose coordinates in some (and 
therefore in any) Cartesian coordinate system satisfy a second order equation, 

𝑎11𝑥2 + 𝑎12𝑥𝑦 + 𝑎22𝑥2 + 2𝑏1𝑥 + 2𝑏2𝑦 + 𝑐 = 0 

  



Solutions of some past homework problems. 

1. Problem. Consider all triangles with a given base and given altitude 

corresponding to this base. Prove that among all these triangles the 

isosceles triangle has the biggest angle opposite to the base.  

Solution. Consider a circumscribed circle for 
different triangles, an isosceles triangle 𝐴𝐵𝐶 and 
some other triangle, 𝐴𝐵𝐶′, which share the base 
𝐴𝐵  and have the same altitude. For all such 
triangles, the center of the circumscribed circle 
will belong to the mid-perpendicular of the base 
𝐴𝐵, ie the altitude of an isosceles triangle on this 
base, or its continuation. If 𝑂 is the center of the 
circle circumscribed around the isosceles 
triangle 𝐴𝐵𝐶 and 𝑂′ is the center of the circumscribed circle for any other 
triangle with the same altitude, 𝐴𝐵𝐶 (on the same side of 𝐴𝐵), then 𝑂′ lies 
farther from 𝐴𝐵 than 𝑂 (see figure). Consequently, ∠𝐴𝑂𝐵 is larger than 
∠𝐴𝑂′𝐵. But by the inscribed angle theorem, ∠𝐴𝑂𝐵 = 2∠𝐴𝐶𝐵, ∠𝐴𝑂′𝐵 =
2∠𝐴𝐶′𝐵, and therefore, ∠𝐴𝐶𝐵 > ∠𝐴𝐶′𝐵.  

2. Problem. Prove that the length of the bisector segment 𝐵𝐵′ of the angle ∠𝐵 

of a triangle 𝐴𝐵𝐶 satisfies |𝐵𝐵′|2  =  |𝐴𝐵||𝐵𝐶| − |𝐴𝐵′||𝐵′𝐶|.  

Solution. Consider the construction used to prove the 
property of a bisector: an isosceles triangle 𝐶𝐵𝐷, 𝐶𝐵 =
𝐵𝐷 = 𝑎. (Recap: the property of a bisector, 𝐵𝐵′, is 
obtained by applying Thales theorem to the angle 𝐷𝐴𝐶 
and two parallel lines, 𝐵𝐵′ and 𝐶𝐷; we then obtain, 
|𝐴𝐵′|: |𝐵′𝐶| = |𝐴𝐵|: |𝐵𝐶|). Draw a circumscribed circle 
around the triangle 𝐴𝐶𝐷 and extend the bisector 𝐵𝐵 to 
obtain the chord 𝐸𝐺 containing 𝐵𝐵′. By symmetry, 
|𝐸𝐵| = |𝐵𝐺| (see Figure). By the property of 
intersecting chords (Euclid’s theorem), we have, |𝐴𝐵||𝐵𝐷| = |𝐸𝐵||𝐵𝐺| =
|𝐸𝐵|2 = (|𝐵𝐵′| + |𝐵′𝐸|)2, wherefrom, |𝐵𝐵′|2 = |𝐴𝐵||𝐵𝐷| − |𝐵′𝐸|(|𝐵′𝐸| +
2|𝐵𝐵′|). On the other hand, by the same theorem, |𝐵′𝐸||𝐵′𝐺| = |𝐵′𝐸|(|𝐵′𝐸| +
2|𝐵𝐵′|) = |𝐴𝐵′||𝐵′𝐶|. Combining these two expressions, we obtain |𝐵𝐵′|2  =
 |𝐴𝐵||𝐵𝐶| − |𝐴𝐵′||𝐵′𝐶|.  
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3.  Problem. In an isosceles triangle 𝐴𝐵𝐶 
with the angles at the base, ∠𝐵𝐴𝐶 =
∠𝐵𝐶𝐴 = 80°, two Cevians 𝐶𝐶′ and 𝐴𝐴′ 
are drawn at an angles ∠𝐵𝐶𝐶′ = 30° and 
∠𝐵𝐴𝐴′ = 20° to the sides, 𝐶𝐵 and 𝐴𝐵, 
respectively (see Figure). Find the angle 
∠𝐴𝐴′𝐶′ = 𝑥 between the Cevian 𝐴𝐴′ and 
the segment 𝐴′𝐶′ connecting the 
endpoints of these two Cevians.  

Solution. Consider the figure. Find isosceles 
and congruent triangles (eg |𝐶′𝐷| = |𝐶′𝑂|, 
|𝐴𝐶′| = |𝐴𝐶| = |𝐴𝑂|, ∆𝐴′𝐶′𝐷 ≅ ∆𝐴′𝐶′𝑂, …). 
It then follows that  ∠𝐷𝐶′𝑂 = ∠𝐶′𝑂𝐴′ =
100°, and 𝑥 = 30°. 
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