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Algebra.  

Comparing finite and infinite sets. Cardinality. 

We have encountered different types of numbers, which can form finite sets, 

(set of 10 decimal digits, set of integers 1 to 100, etc.), or infinite sets, such as 

natural numbers, ℕ, integers, ℤ, rational numbers, ℚ, real numbers, ℝ. The 

basic idea of numbering the elements in a set leads us to the concept of 

comparing different sets. The numbering procedure amounts to establishing a 

bijection between the elements of a set, 𝐴, and the elements of a subset of 

natural numbers, 𝑁 ⊆ ℕ. The obvious question then, can every set be 

numbered? Can set of all integers, ℤ, be numbered? Of rational numbers, ℚ? Of 

real numbers, ℝ? Obviously, a set, 𝐴, can be numbered, if and only if, a 

bijection exists between this set and ℕ, 𝐴
 

↔ ℕ.  

If elements in the set can be counted by assigning a natural integer to each 

element, the set is called countable. The set that is not countable is called 

uncountable.  More rigorously, we can give the following definition.  

Definition. An infinite set is countable if a bijection exists between this set and 

the set of natural numbers ℕ.  

Two finite sets, 𝐴 and 𝐵, such that a bijection exists 𝐴
 

↔ 𝐵 necessarily have 

equal number of elements, i.e. are equinumerous. Such sets form an 

equivalence class, corresponding to the natural number that denotes the 

number of elements in the sets of this class. Thus, natural numbers arise as a 

characteristic of equivalence classes of finite sets having the same number of 

elements. Georg Cantor, the originator of set theory, in 1874–1884 extended 

this concept to infinite sets, such as all integers, or real numbers, which led to 

comparing different types of infinite numbers, which are called cardinals 

(transfinite numbers). For a finite set 𝐴 the cardinal, 𝑐(𝐴), is simply a number 

of elements, while for the infinite sets it has many properties reminiscent of it.  

From the inclusion-exclusion principle, it follows that,  



𝑐(𝐴) + 𝑐(𝐵) =  𝑐(𝐴 ∪ 𝐵) + 𝑐(𝐴 ∩ 𝐵) ≡  𝑐(𝐴 + 𝐵) + 𝑐(𝐴 ∙ 𝐵). For disjoint sets, 

𝐴 ∙ 𝐵 = 0, and 𝑐(𝐴) + 𝑐(𝐵) =   𝑐(𝐴 + 𝐵).  

One can define addition and multiplication for cardinals, such that the 

commutative, associative, and distributive laws hold,  

𝑐(𝐴) + 𝑐(𝐵) = 𝑐(𝐴 ∪ 𝐵) + 𝑐(𝐴 ∩ 𝐵) =  𝑐(𝐴 + 𝐵) + 𝑐(𝐴 ∙ 𝐵) =  𝑐(𝐵) + 𝑐(𝐴)  

(𝑐(𝐴) + 𝑐(𝐵)) + 𝑐(𝐶) = 𝑐(𝐴) + (𝑐(𝐵) + 𝑐(𝐶)) = 𝑐(𝐴) + 𝑐(𝐵) + 𝑐(𝐶)  

The product of cardinal numbers of the two sets is, by definition, the cardinal 

number of the Cartesian product of these sets,  

𝑐(𝐴) ∙ 𝑐(𝐵) ≡ 𝑐(𝐴 × 𝐵) =  𝑐(𝐵) ∙ 𝑐(𝐴)  

(𝑐(𝐴) ∙ 𝑐(𝐵)) ∙ 𝑐(𝐶) = 𝑐(𝐴) ∙ (𝑐(𝐵) ∙ 𝑐(𝐶)) = 𝑐(𝐴) ∙ 𝑐(𝐵) ∙ 𝑐(𝐶)  

The distribution law also holds, 

(𝑐(𝐴) + 𝑐(𝐵)) ∙ 𝑐(𝐶) = 𝑐(𝐴) ∙ 𝑐(𝐶) + 𝑐(𝐵) ∙ 𝑐(𝐶).  

An interesting and important property of cardinals, which was noted by 

Galileo in 1638, is that a cardinal of a subset of a given set can be equal to the 

cardinal of the set itself. The whole is not necessarily greater than its part, it 

can be equal to it, if “greater” means more numerous, and equal – 

equinumerous. For example, function 𝑓(𝑛) = 2𝑛 establishes a bijection 

between all integers and even integers, 𝑓(𝑛) = 𝑛2 establishes a bijection 

between the set of natural numbers and the subset of perfect squares, etc. All 

countable sets have the same cardinal as the set of natural numbers, ℵ0. Note 

that using the addition rules defined above for the set of natural numbers, ℕ =

ℕ2𝑘 ∪ ℕ2𝑘+1, where ℕ2𝑘 and ℕ2𝑘+1 are subsets of even and odd natural 

numbers, respectively, we obtain a seemingly paradoxical result,  

𝑐(ℕ) = 𝑐(ℕ2𝑘) + (ℕ2𝑘+1), or, ℵ0 = ℵ0 + ℵ0,  



Doubling ℵ0 does not change it! Also note that we cannot deduce from the 

above that ℵ0 = 0, because we do not know how to subtract cardinals.  

Comparing cardinalities. If there exists an injection, 𝐴
 

→ 𝐵, i. e. set 𝐴 can be 

paired with a subset of set 𝐵, then 𝑐(𝐴) ≤ 𝑐(𝐵). This order relation on 

cardinalities has following useful properties, 

• 𝑐(𝐴) ≤ 𝑐(𝐴) 

• {(𝑐(𝐴) ≤ 𝑐(𝐵)) ∧ (𝑐(𝐵) ≤ 𝑐(𝐶))}
 

⇒ (𝑐(𝐴) ≤ 𝑐(𝐶)) 

• {(𝑐(𝐴) ≤ 𝑐(𝐵 )) ∧ (𝑐(𝐶) ≤ 𝑐(𝐷))}
 

⇒ (𝑐(𝐴) + 𝑐(𝐶)) ≤ (𝑐(𝐵) + 𝑐(𝐷 )) 

• {(𝑐(𝐴) ≤ 𝑐(𝐵 )) ∧ (𝑐(𝐶) ≤ 𝑐(𝐷))}
 

⇒ (𝑐(𝐴) ∙ 𝑐(𝐶)) ≤ (𝑐(𝐵) ∙ 𝑐(𝐷 )) 

• {(𝑐(𝐴) ≤ 𝑐(𝐵)) ∧ (𝑐(𝐴) ≤ 𝑐(𝐵))}
 

⇒ (𝑐(𝐴) = 𝑐(𝐵)) 

Countable sets. The following properties of the countable sets can be easily 

proven. For any two countable sets, 𝐴, 𝐵, 

• Union, 𝐴 ∪ 𝐵, is also countable, ((𝑐(𝐴) = ℵ0) ∧ (𝑐(𝐵) = ℵ0))
 

⇒ (𝑐(𝐴 ∪ 𝐵) = ℵ0) 

• Product, 𝐴 × 𝐵 = {(𝑎, 𝑏), 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}, is also countable, ((𝑐(𝐴) = ℵ0) ∧

(𝑐(𝐵) = ℵ0))
 

⇒ (𝑐(𝐴 ∪ 𝐵) = ℵ0) 

• For a collection of countable sets, {𝐴𝑛}, 𝑐(𝐴𝑛) = ℵ0, the union is also 

countable, 𝑐(𝐴1 ∪ 𝐴2 … ∪ 𝐴𝑛) = ℵ0 

The examples of countable sets are, 

• Set ℤ of all integers is countable, 𝑐(ℤ) = ℵ0 

• Set ℕ × ℕ of pairs of positive integers is countable, 𝑐(ℕ × ℕ ) = ℵ0 

• Set ℚ of rational numbers is countable, 𝑐(ℚ) = ℵ0 

• Set ℚ × ℚ of pairs of rational numbers is countable, 𝑐(ℚ × ℚ ) = ℵ0 

• Set of all polynomials with rational coefficients is countable 

Uncountable sets. Continuum. The set of all real numbers, ℝ, is uncountable. 

An ingenious indirect proof of this was given by Cantor. The proof proceeds by 

contradiction. We assume that there exists a bijection between ℕ and all real 

numbers, which can be written in the decimal form, 𝐴. 𝑎1𝑎2𝑎3 …. We then 



construct a number that does not occur in the assumed denumeration 

sequence, 

1. 𝐴. 𝑎1𝑎2𝑎3 … 

2. 𝐵. 𝑏1𝑏2𝑏3 … 

3. 𝐶. 𝑐1𝑐2𝑐3 … 

4. 𝐷. 𝑑1𝑑2𝑑3 … 

…  

To do so, we consider a number 𝑧 = 0. 𝑧1𝑧2𝑧3 …, where 𝑧1 is different from 𝑎1, 

and is neither 0 or 9, 𝑧2 is different from 𝑎2, and is neither 0 or 9, and so on. 𝑧 

is a real number, but it is not included in the assumed denumeration above. 

Thus, we arrived at a contradiction, because we have assumed that all real 

numbers were included in the denumeration. This assumption must be false if 

there does exist a number which has been left out. Consequently, the 

assumption that a denumeration of the set of real numbers is possible is 

untenable. Hence, the opposite statement is true: the set of real numbers is 

not countable. The cardinality of the set of real numbers is called continuum.  

Whether there exists a set with a cardinal number greater than that of the set 

of integers, ℵ0, but smaller than that of the set of real numbers, continuum, is a 

question which cannot be answered, i.e. such existence cannot be proved, or 

disproved. The assumption that such set exists, constitutes Hypothesis of the 

Continuum.  

Cantor has shown that sets with greater and greater cardinal numbers exist, 

so there is no greatest cardinal number. 

Theorem. Given set 𝐴, it is possible to construct set 𝐵 with greater cardinal 

number, 𝑐(𝐵) > 𝑐(𝐴). 

An indirect proof of this theorem given by Cantor proceeds by considering a 

set of all possible subsets of 𝐴,  𝑆 = {𝑆𝐴}, ∀𝑆𝐴 ⊆ 𝐴 = {𝑎}. The set 𝑆 includes 

both 𝐴 and an empty set, ∅, and therefore 𝑐(𝑆) ≥ 𝑐(𝐴). Then, we assume that 

𝑆 has the same cardinality as 𝐴, i. e. that a bijection exists between  𝑆  and 𝐴 , 𝑆



 
↔ 𝐴, and arrive at a contradiction by constructing a subset of 𝐴, which is not 

an element of 𝑆. The bijection 𝑆
 

↔ 𝐴 “counts” all possible subsets of a set 𝐴 by 

using the elements, 𝑎 ∈ 𝐴, of the set itself, thus establishing a correspondence, 

𝑎
 

↔ 𝑆𝑎, ∀𝑆𝑎 ∈ 𝑆. That this is not possible for finite sets, is rather obvious.  

Exercise. Show that for a set of 𝑛 elements, the set of all possible subsets has 

2𝑛 elements (Hint: remember Newton’s binomial?).  

In order to arrive at a contradiction, we consider a subset, {𝑎′} = 𝐴′ ⊆ 𝐴, 

which is composed of all such elements 𝑎′ ∈ 𝐴, which do not belong to the 

corresponding subset 𝑆𝑎′ in the bijection,  𝑎′
 

↔ 𝑆𝑎′; 𝑎′ ∉ 𝑆𝑎′. This subset differs 

from any subset 𝑆𝑎′ of set 𝐴 by at least one element,  𝑎′, and therefore the 

assumption that such a bijection exists is untenable (remember, all possible 

subsets of 𝐴 are included in the bijection,  𝑎′
 

↔ 𝑆𝑎′). It then follows that 𝑐(𝑆) >

𝑐(𝐴), so for any set 𝐴 the set of its all possible subsets has greater cardinal 

number than the set itself, and therefore there is no greatest cardinal number.  

Exercise. Show that for the set of natural numbers, ℕ, cardinality of the set of 

all possible subsets is equal to that of a continuum of real numbers (Hint: use 

the binary number system).  

Continuum and Dimensionality. The set of all real numbers, ℝ, which is 

uncountable, can be represented by points on a line, the coordinate axis.  

Exercise. Show that the set of all real numbers from 0 to 1, {𝑥}, 𝑥 ∈ ℝ, 0 ≤ 𝑥 ≤

1, has the same cardinality (continuum) as the set of all real numbers, ℝ, i.e 

that a segment, [0,1], is equivalent to an infinite line. Similarly, any segment, 

[𝑎, 𝑏], on a line, is equivalent to any other segment, [𝑐, 𝑑].  

One might think that cardinality of a two-dimensional set of points, such as all 

points of the square with side 1, or all points on the plane, is greater than that 

of a one-dimensional continuum. It appears that this is not the case!  

Theorem. The cardinal number, 𝑐2, of the set of points in a square is the same 

as the cardinal number, 𝑐1, of the set of points on a line segment.  



Proof. It is sufficient to prove this equivalence for a square with side 1 and a 

segment [0,1]. Indeed, we can establish a correspondence between any point 

with coordinates (𝑥, 𝑦), 𝑥 ∈ [0,1], 𝑦 ∈ [0,1] in a square, and a point  𝑧 ∈ [0,1] 

on a segment in the following way. Let us write numbers 𝑥 = 0. 𝑥1𝑥2𝑥3 … and 

𝑦 = 0. 𝑦1𝑦2𝑦3 … in decimal notation, where we identify numbers ending in an 

infinite sequence of 9’s, which represent rational numbers, with finite-length 

decimals, 𝑎. 𝑏𝑐999(9) = 𝑎. 𝑏𝑐, so infinite sequences of 9 do not appear. We 

then assign a number 𝑧 = 0. 𝑥1𝑦1𝑥2𝑦2𝑥3𝑦3 … , 𝑧 ∈ [0,1] to the point (𝑥, 𝑦). To 

every point in a square we have thus assigned a unique number on a segment 

[0,1], since for any other point, (𝑥′, 𝑦′), either 𝑥′, or 𝑦′, or both, differ from 𝑥 

and 𝑦, respectively, in at least one digit. Therefore, the corresponding number 

𝑧′ ∈ [0,1] will also be different. Note, that the above described correspondence 

is not a bijection, but an injection, because numbers of the type 𝑧 =

 𝑎. 𝑏 … 0909(09) … , 𝑧 ∈ [0,1], which do correspond to points on a segment 

[0,1] have no corresponding points on a square. While it is possible to modify 

this correspondence so that it becomes a bijection, this is not necessary for 

our purposes, as the existence of an injection [0,1] × [0,1]
 

→ [0,1]  already 

proves that 𝑐2 ≤ 𝑐1. The obvious surjection established by associating just one 

side of a square with the segment shows that 𝑐2 ≥ 𝑐1. It then follows that 𝑐2 =

𝑐1. One can extend this argument to show that the cardinal number of a set of 

points in a cube is also equal to the cardinal number of the set of points on a 

segment, 𝑐3 = 𝑐1. 

Exercise. Show that the cardinal number of an 𝑛 −dimensional hyper-cube is 

equal to the cardinal number of a segment, 𝑐𝑛 = 𝑐1. 

The main conclusion from the above observations is that the dimension of a 

set of points depends not only on the cardinal number of the set. While the 

fact that the cardinality of a square, or cube, is equal to that of a segment 

seems to disagree with the intuitive notion of dimensionality, the fundamental 

reason that the above correspondence works is that it is not continuously 

mapping one set to the other. In fact, if we vary point 𝑧 on a segment 

continuously from 0 to 1, the corresponding points in a square would appear 



in a completely random and discontinuous manner. This is the subject that is 

studied in topology.   

How then does the set of all rational points on the segment [0,1] compare to 

the set of all points on this segment? We have already proven that the set of 

rational points is countable and has the cardinal ℵ0, while the set of all points 

on the segment [0,1] is an uncountable continuum. The following theorem 

provides an alternative proof of this fact.  

Theorem. The cardinal number of a denumerable set of points on a segment is 

less than that of an arbitrarily small, of length 𝜀 ≤ 1, part of that segment.  

Proof. It is sufficient to prove this for a segment [0,1]. Let us arrange all points 

of the countable set 𝐴 = {𝑎𝑛}, 𝑛 ∈ ℕ, 𝐴 ⊂ [0,1], in a sequence, 

𝑎1, 𝑎2𝑎3, … , 𝑎𝑛 , ….. Let us now enclose each point in a segment, such that the 

length of the segment enclosing 𝑛-th point is 𝜀 10𝑛⁄  . While some of these 

segments might be overlapping, the total length covered by these segments is 

not larger than the total length of the segments, 𝑙 =
𝜀
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. Because 𝜀 can be arbitrarily small, in the language of 

measure theory, the denumerable set of points has measure zero. 


