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Geometry.  

Selected problems on similar triangles (from last homeworks).  

Problem 1(5). Prove that altitudes of any triangle are the bisectors in another 

triangle, whose vertices are the feet of these altitudes (hint: prove that the line 

connecting the feet of two altitudes of a triangle cuts off a triangle similar to 

it).  

Solution. Notice similar right triangles, 

𝐴𝐶𝐻𝑎~𝐵𝐶𝐻𝑏, which implies, 
|𝐴𝐶|

|𝐵𝐶|
=

|𝐶𝐻𝑎|

|𝐶𝐻𝑏|
. 

Therefore, 𝐶𝐻𝑎𝐻𝑏~𝐴𝐵𝐶. Similarly, from 

𝐶𝐴𝐻𝑐~𝐵𝐴𝐻𝑏 it follows that 𝐴𝐻𝑏𝐻𝑐~𝐴𝐵𝐶, and 

from 𝐴𝐵𝐻𝑎~𝐵𝐶𝐻𝑐 that 𝐵𝐻𝑐𝐻𝑎~𝐴𝐵𝐶.  

Problem 2(2). Rectangle DEFG is inscribed in triangle ABC such that the side 
DE belongs to the base AB of the triangle, while points F and G belong to sides 
BC abd CA, respectively. What is the largest area of rectangle DEFG?   

Solution. Notice similar triangles, 𝐶𝐷𝐸~𝐴𝐵𝐶, 
wherefrom the vertical side of the rectangle is, 

|𝐷𝐺| = |𝐸𝐹| = |𝐶𝐻| − |𝐶𝐻′| = (1 −
|𝐷𝐸|

|𝐴𝐵|
) |𝐶𝐻|, 

so that the area of the rectangle is, 𝑆𝐷𝐸𝐹𝐺 =

|𝐷𝐸||𝐷𝐺| = |𝐷𝐸| (1 −
|𝐷𝐸|

|𝐴𝐵|
) |𝐶𝐻| =

|𝐷𝐸|

|𝐴𝐵|
(1 −

|𝐷𝐸|

|𝐴𝐵|
) |𝐴𝐵||𝐶𝐻| =

|𝐷𝐸|

|𝐴𝐵|
(1 −

|𝐷𝐸|

|𝐴𝐵|
) 2𝑆𝐴𝐵𝐶 . 

Using the geometric-arithmetic mean 

inequality, 
|𝐷𝐸|

|𝐴𝐵|
(1 −

|𝐷𝐸|

|𝐴𝐵|
) ≤ (

|𝐷𝐸|

|𝐴𝐵|
+1−

|𝐷𝐸|

|𝐴𝐵|

2
)

2

=
1

4
, 

where the largest value of the left side is 

achieved when 
|𝐷𝐸|

|𝐴𝐵|
= 1 −

|𝐷𝐸|

|𝐴𝐵|
, and therefore 

𝑆𝐷𝐸𝐹𝐺 =
1

2
𝑆𝐴𝐵𝐶 . There are a number of other 

possible solutions, some of which are shown in the figures.  
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Archimedes of Syracuse 

Born c. 287 BC  

Syracuse, Sicily  

Magna Graecia 

Died c. 212 BC (aged 

around 75) , Syracuse 

The Law of Lever. The Method of the Center of Mass.  

Archimedes’ Law of Lever.  

"Give me a place to stand on, and I will move the earth." 

quoted by Pappus of Alexandria in Synagoge, Book VIII, c. AD 340 

Archimedes of Syracuse generally considered the 
greatest mathematician of antiquity and one of the 
greatest of all time. Archimedes anticipated modern 
calculus and analysis by applying concepts of 
infinitesimals and the method of exhaustion to derive 
and rigorously prove a range of geometrical theorems, 
including the area of a circle, the surface area and 
volume of a sphere, and the area under a parabola.   

He was also one of the first to apply mathematics to 

physical phenomena, founding hydrostatics and statics, 

including an explanation of the principle of the lever. 

He is credited with designing innovative machines, such 

as his screw pump, compound pulleys, and defensive 

war machines to protect his native Syracuse from the 

Roman invasion.  

Archimedes derives the Law of Lever from several simple axioms 

(assumptions), which summarize the everyday experience, in a manner 

similar to those in Euclidean geometry.  

Axiom 1. Equal weights at equal distances from the fulcrum balance.  Equal 

weights at unequal distance from the fulcrum do not balance, but the weight 

at the greater distance will tilt its end of the lever down.  
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Axiom 2. If, when two weights balance, we add something to one of the 

weights, they no longer balance. The side holding the weight we increased 

goes down. 

 

Axiom 3. If, when two weights balance, we take something away from one of 

them, they no longer balance.  The side holding the weight we did not change 

goes down. 

 

Archimedes then proves the inverse statements as propositions (theorems). 

Proposition 1. Weights that balance at equal distances from the fulcrum are 

equal. 

Proposition 2. Unequal weights at equal distances from the fulcrum do not 

balance, but the side holding the heavier weight goes down. 

Proposition 3. Unequal weights balance at unequal distances from the 

fulcrum, the heavier weight being at the shorter distance. 

Proposition 4. If two equal weights have different centers of gravity then the 

center of gravity of the two together is the midpoint of the line segment 

joining their centers of gravity.  
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Proposition 4 is just a rephrase of the Axiom 1, where Archimedes tacitly 

introduces the notion of the Center of Gravity (Center of Mass). The way to 

understand the Proposition 4 is to treat the entire weight as if it is located at a 

single point, its center of gravity. In other words, we can picture each weight 

(mass) as concentrated in a single point, i. e. as a Point Mass. We shall use 

terms weight and mass interchangeably, assuming that weight is associated 

with a mass in the homogeneous gravitation field, and therefore is 

proportional to the mass. The following observation immediately follows from 

the Proposition 4.  

Corollary. If an even number of equal weights have their centers of gravity 

situated along a straight line such that the distances between the consecutive 

weights are all equal, then the center of gravity of the entire system is the 

midpoint of the line segments joining the centers of gravity of the two weights 

in the middle.  

 

At this point Archimedes proves the Law of Lever, first only for commensurate 

weights.  

Proposition 5. Commensurate weights (masses) balance at distances from the 

fulcrum, which are inversely proportional to their magnitudes, 
𝑑

𝐷
=

𝑀

𝑚
.  
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Proof. Let 𝑤 be the greatest common measure of weights (masses) 𝑚  and 𝑀, 

𝑚 = 𝑝𝑤, 𝑀 = 𝑛𝑤, {𝑝, 𝑛} ∈ 𝑁. Let us split weight 𝑀 into 2𝑛  smaller pieces, 

each of weight 𝑤/2, and weight 𝑚 into 2𝑝 smaller pieces of weight 𝑤/2. Let us 

now split the segment connecting 𝑀 and 𝑚 into 𝑛 + 𝑝 congruent smaller 

segments, and also mark 𝑛 such segments on the opposite side of weight 𝑀 

and 𝑝 such segments on the opposite side of weight 𝑚.  Let us now place all 

2(𝑛 + 𝑝) smaller weights 𝑤  at the centers of these 2(𝑛 + 𝑝) segments as 

shown in the Figure. Clearly, since each of the initial weights was split into an 

even number of equal pieces, which were placed symmetrically around its 

initial position, the resultant system of smaller weights has the same center of 

gravity as the original weight. On the other hand, the obtained system of 

2(𝑛 + 𝑝) weights 𝑤/2 has the center of gravity in the middle, at a distance of 𝑝 

segments from the position of weight 𝑀 and 𝑛 segments from the position of 

weight 𝑚, as illustrated in the Figure. Therefore, 
𝐷

𝑑
=

𝑝

𝑛
=

𝑚

𝑀
, which proves the 

Law of Lever for the commensurate weights. The theorem for the 

incommensurate weights is then proven by reducing to contradiction.  

Theorem (Law of Lever).  Masses (weights) balance at distances from the 

fulcrum, which are inversely proportional to their magnitudes,  

 

𝐷

𝑑
=

𝑀

𝑚
 

 
⇔ 𝑀𝑑 = 𝑚𝐷 

For commensurate masses, = 𝑝 ∙ 𝑤, 𝑚 = 𝑞 ∙ 𝑤, 𝑝, 𝑞 ∈ ℕ , the Law was proven 

using the main “trick” of the mass points method: each of the two masses is 

split into 2𝑝 and 2𝑞 smaller masses, 𝑤/2, respectively, which are then re-

positioned in pairs around the original masses so that positions of the center 

of mass (COM) for each of the two original masses do not change, but the COM 

position for the whole system becomes obvious.   
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In order to prove the Law of Lever for incommensurate masses, we first make 

the following observation.  

Lemma. If two commensurate masses 𝑚 and 𝑀 are placed at distances 𝐷 and 

𝑑 from the fulcrum, respectively, then 𝑀 goes up if and only if 𝑀𝑑 < 𝑚𝐷,  

(𝑀 𝑟𝑖𝑠𝑒𝑠 𝑢𝑝)
 

⇔ (𝑀𝑑 < 𝑚𝐷) 

First, if distances 𝑑 and 𝐷 are incommensurate, we move mass 𝑀 slightly, to a 

position 𝑑′ which is commensurate with 𝐷, but such that 𝑀 still rises up. 

Therefore, we only need to consider case when 𝑑 and 𝐷 are commensurate. 

Since 𝑀 rises up, we need to increase mass 𝑀 to achieve balance. Let 𝑀′ > 𝑀 

be such that  𝑀′ and 𝑚 balance. Using the Law of Lever for commensurate 

masses we have, 𝑀′ = 𝑚
𝐷

𝑑
 (because distances are commensurate, so are the 

masses). Since 𝑀 < 𝑀′ = 𝑚
𝐷

𝑑
, it follows that 𝑀𝑑 < 𝑚𝐷. Conversely, if 𝑀𝑑 <

𝑚𝐷 we can increase it to 𝑀′ = 𝑚
𝐷

𝑑
, which balances 𝑚. Decreasing mass from 

back to 𝑀 will cause it to rise.  

Corollary. The converse statement immediately follows via excluded middle, 

(𝑀 𝑔𝑜𝑒𝑠 𝑑𝑜𝑤𝑛)
 

⇔ (𝑀𝑑 > 𝑚𝐷) 

Proof (case of incommensurate masses). Let now two incommensurate 

masses 𝑚 and 𝑀, be placed at distances 𝑑 and 𝐷 from the fulcrum, 

respectively, such that the Law of Lever is satisfied, 𝑀𝑑 = 𝑚𝐷. Assume that 

the masses nevertheless do not balance, for example, 𝑀 goes down. Decrease 

mass 𝑀 by a small amount, turning it into 𝑀′, such that it still goes down, but 

is now commensurate with 𝑚. Now 𝑚 and 𝑀′ are commensurate, and 𝑚𝐷 >

𝑀′𝑑, which means that 𝑀′ should rise. This contradicts our assumption, so 𝑚 

and 𝑀 must balance. Note that in the above we used a non-trivial fact that a 

commensurate mass, or distance can be found that differs from the given 

incommensurate one by an arbitrarily small amount. This means that for any 

irrational number there exists a rational number, which differs from it as little 

as we want, i. e. that rational numbers are dense.  
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Method of the Center of Mass (Mass Points).  

Definition. For two point masses, 𝑚𝐴 and 𝑚𝐵 at points 𝐴 and 𝐵, the center of 

mass lies at a point 𝐶′ on the straight line segment |𝐴𝐵|, such that,  

|𝐴𝐶′|

|𝐶′𝐵|
=

𝑚𝐵

𝑚𝐴
. 

When finding the center of mass in a system of point masses, one can replace 

any pair of masses, 𝑚𝐴 and 𝑚𝐵 , with a single point mass having the total mass 

𝑚𝐴 + 𝑚𝐵 , placed at the center of mass of the pair.  

The following important properties of the Center of Mass follow immediately. 

1. Every system of finite number of point masses has unique center of 

mass (COM).  

2. For two point masses, the COM belongs to the segment connecting these 

points; its position is determined by the Archimedes lever rule: the 

point’s mass times the distance from it to the COM is the same for both 

points. 

3. The position of the system’s center of mass does not change if we move 

any subset of point masses in the system to the center of mass of this 

subset. In other words, we can replace any number of point masses with 

a single point mass, whose mass equals the sum of all these masses and 

which is positioned at their COM. 

Ceva’s Theorem: Point Masses.  

We select masses, 𝑚𝐴, 𝑚𝐵 , and 𝑚𝐶  such that 

the corresponding centers of mass for each 

pair are at points A’, B’ and C’, respectively.  

Then, 

|𝐴𝐵′|

|𝐵′𝐶|
∙

|𝐶𝐴′|

|𝐴′𝐵|
∙

|𝐵𝐶′′|

|𝐶′𝐴|
=

𝑚𝐶

𝑚𝐴
∙

𝑚𝐵

𝑚𝐶
∙

𝑚𝐴

𝑚𝐵
= 1.  


