Algebra.

Arithmetic and geometric mean inequality: Proof by induction.

The arithmetic mean of n numbers, $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, is, by definition,
$A_{n}=\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}=\frac{1}{n} \sum_{i=1}^{n} a_{i}$
The geometric mean of n non-negative numbers, $\left\{a_{n} \geq 0\right\}$, is, by definition,
$G_{n}=\sqrt[n]{a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n}}=\sqrt[n]{\prod_{i=1}^{n} a_{i}}$
Theorem. For any set of n non-negative numbers, the arithmetic mean is not smaller than the geometric mean,
$\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \geq \sqrt[n]{a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n}}$
The standard proof of this fact by mathematical induction is given below.
Induction basis. For $n=1$ the statement is a true equality. We can also easily prove that it holds for $n=2$. Indeed, $\left(a_{1}+a_{2}\right)^{2}-4 a_{1} a_{2}=\left(a_{1}-a_{2}\right)^{2} \geq 0$ $\Rightarrow a_{1}+a_{2} \geq 2 \sqrt{a_{1} a_{2}}$.

Induction hypothesis. Suppose the inequality holds for any set of n nonnegative numbers, $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.

Induction step. We must prove that the inequality then also holds for any set of $n+1$ non-negative numbers, $\left\{a_{1}, a_{2}, \ldots, a_{n+1}\right\}$.

Proof. If $a_{1}=a_{2}=\cdots=a_{n}=a_{n+1}$, then the equality, $A_{n+1}=G_{n+1}$, obviously holds. If not all numbers are equal, then there is the smallest (smaller than the mean) and the largest (larger than the mean). Let these be $a_{n+1}<A_{n+1}$, and $a_{n}>A_{n+1}$. Consider new sequence of n non-negative numbers, $\left\{a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}+a_{n+1}-A_{n+1}\right\}$. The arithmetic mean for these n numbers is still equal to A_{n+1},
$\frac{a_{1}+a_{2}+\cdots+a_{n-1}+a_{n}+a_{n+1}-A_{n+1}}{n}=\frac{n+1}{n} A_{n+1}-\frac{1}{n} A_{n+1}=A_{n+1}$

Therefore, by induction hypothesis,
$\left(A_{n+1}\right)^{n} \geq a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n-1} \cdot\left(a_{n}+a_{n+1}-A_{n+1}\right)$
$\left(A_{n+1}\right)^{n+1} \geq a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n-1} \cdot\left(a_{n}+a_{n+1}-A_{n+1}\right) \cdot A_{n+1}$
Wherein, using $a_{n+1}<A_{n+1}$ and $a_{n}>A_{n+1}$, as assumed above, we get $\left(a_{n}-A_{n+1}\right)\left(A_{n+1}-a_{n+1}\right)>0$, or, $a_{n} a_{n+1}<\left(a_{n}+a_{n+1}-A_{n+1}\right) A_{n+1}$, so we could substitute the last two terms in the product with $a_{n} \cdot a_{n+1}$, while keeping the inequality. This completes the proof. a

Review of selected homework problems.

1. Using mathematical induction, prove that $\forall n \in \mathbb{N}$,
a. $\sum_{k=1}^{n}(2 k-1)^{2}=1^{2}+3^{2}+5^{2}+\cdots+(2 n-1)^{2}=\frac{4 n^{3}-n}{3}$,
b. $\quad \sum_{k=1}^{n}(2 k)^{2}=2^{2}+4^{2}+6^{2}+\cdots+(2 n)^{2}=\frac{2 n(2 n+1)(n+1)}{3}$
c. $\sum_{k=1}^{n} k^{3}=1^{3}+2^{3}+3^{3}+\cdots+n^{3}=(1+2+3+\cdots+n)^{2}$
d. $\sum_{k=1}^{n} \frac{1}{(2 k-1)(2 k+1)}=\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\cdots+\frac{1}{(2 n-1)(2 n+1)}<\frac{1}{2}$
e. $\quad \sum_{k=1}^{n} \frac{1}{(7 k-6)(7 k+1)}=\frac{1}{1 \cdot 8}+\frac{1}{8 \cdot 15}+\frac{1}{15 \cdot 22}+\cdots+\frac{1}{(7 n-6)(7 n+1)}<\frac{1}{7}$
f. $\quad \sum_{k=n+1}^{3 n+1} \frac{1}{k}=\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\cdots+\frac{1}{3 n+1}>1$

Solution of (f)

Basis: $P_{1}: \sum_{k=2}^{4} \frac{1}{k}=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}>1$
Induction: $P_{n} \Rightarrow P_{n+1}$, where $P_{n+1}: \sum_{k=n+2}^{3 n+4} \frac{1}{k}=\frac{1}{n+2}+\frac{1}{n+3}+\cdots+\frac{1}{3 n+4}>1$
Proof: $\sum_{k=n+2}^{3 n+4} \frac{1}{k}=\frac{1}{n+2}+\frac{1}{n+3}+\cdots+\frac{1}{3 n+1}+\frac{1}{3 n+2}+\frac{1}{3 n+3}+\frac{1}{3 n+4}=\sum_{k=n+1}^{3 n+1} \frac{1}{k}+$ $\frac{1}{3 n+2}+\frac{1}{3 n+3}+\frac{1}{3 n+4}-\frac{1}{n+1}>1$, because $\sum_{k=n+1}^{3 n+1} \frac{1}{k}>1$ by induction assumption, and $\frac{1}{3 n+2}+\frac{1}{3 n+3}+\frac{1}{3 n+4}-\frac{1}{n+1}=\frac{1}{3}\left(\frac{1}{n+\frac{2}{3}}+\frac{1}{n+\frac{4}{3}}-\frac{2}{n+1}\right)=\frac{1}{3}\left(\frac{2 n+2}{\left(n+\frac{2}{3}\right)\left(n+\frac{4}{3}\right)}-\frac{2}{n+1}\right) \geq$ $\frac{1}{3}\left(\frac{2 n+2}{(n+1)^{2}}-\frac{2}{n+1}\right) \geq 0$ (here we used the arithmetic-geometric mean inequality, $\left.\sqrt{\left(n+\frac{2}{3}\right)\left(n+\frac{4}{3}\right)} \leq \frac{2 n+2}{2}=n+1\right)$.
2. Prove by mathematical induction that for any natural number n,
a. $5^{n}+6^{n}-1$ is divisible by 10
b. $9^{n+1}-8 n-9$ is divisible by 64

Solution of (b)

Basis: $P_{1}: 9^{2}-72-9=0$ is divisible by 64
Induction: $P_{n} \Rightarrow P_{n+1}$, where $P_{n+1}: \exists k \in \mathbb{Z}, 9^{n+2}-8(n+1)-9=64 k$
Proof: $9^{n+2}-8(n+1)-9=9 \cdot 9^{n+1}-8 n-17=9\left(9^{n+1}-8 n-9\right)+64 n+$ $64=64 k$ if $P_{n}: \exists k^{\prime} \in \mathbb{Z}, 9^{n+1}-8 n-9=64 k^{\prime}$
3. Problems on binomial coefficients, which are defined as, $C_{n}^{k}={ }_{k} C_{n}=\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
a. Prove that $C_{n+k}^{2}+C_{n+k+1}^{2}$ is a full square
b. Find n satisfying the following equation,

$$
C_{n}^{n-1}+C_{n}^{n-2}+C_{n}^{n-3}+\cdots+C_{n}^{n-10}=1023
$$

c. Prove that

$$
\frac{C_{n}^{1}+2 C_{n}^{2}+3 C_{n}^{3}+\cdots+n C_{n}^{n}}{n}=2^{n-1}
$$

Solution of (b)

$C_{n}^{n-1}+C_{n}^{n-2}+C_{n}^{n-3}+\cdots+C_{n}^{n-10}=C_{n}^{1}+C_{n}^{2}+C_{n}^{3}+\cdots+C_{n}^{10}=C_{n}^{0}+C_{n}^{1}+$ $C_{n}^{2}+C_{n}^{3}+\cdots+C_{n}^{10}-1$, so, $C_{n}^{0}+C_{n}^{1}+C_{n}^{2}+C_{n}^{3}+\cdots+C_{n}^{10}=1024=2^{10}$, which is satisfied for $n=10$ thanks to the property of the binomial coefficients,

$$
C_{n}^{0}+C_{n}^{1}+C_{n}^{2}+\cdots+C_{n}^{k}+\cdots+C_{n}^{n}=(1+1)^{n}=2^{n}
$$

Solution of (c)

$$
\frac{C_{n}^{1}+2 C_{n}^{2}+3 C_{n}^{3}+\cdots+n C_{n}^{n}}{n}=C_{n-1}^{0}+C_{n-1}^{1}+C_{n-1}^{2}+\cdots+C_{n-1}^{n-1}=2^{n-1}
$$

