Baseline revue test. Algebra.

1. Open parentheses and expand the following expressions.
a. $(a+b)^{2}=$
b. $(a-b)^{2}=$
c. $(a+b)^{3}=$
d. $(a-b)^{3}=$
2. Factor the following expressions
a. $\quad a^{2}-b^{2}=$
b. $a^{2}+b^{2}=$
c. $a^{3}-b^{3}=$
d. $a^{3}+b^{3}=$
e. $1+a+a^{2}+a^{3}=$
3. For a quadratic equation $a x^{2}+b x+c=0$ the roots are,
$x_{1,2}=$
and they have the following properties,
$x_{1}+x_{2}=$
$x_{1} \cdot x_{2}=$
4. Open parentheses and expand the following expression,
$(a+b)^{10}=$
5. What is the number of permutations of n objects?
6. How many ways are there to select k objects out of n if,
a. order does matter?
b. order does not matter?
7. Write the formula for a binomial coefficient

$$
C_{n}^{k} \equiv{ }_{n} C_{k} \equiv\binom{n}{k}=
$$

and explain its relation to combinatorics and certain counting problems.
8. What is the remainder of division of 3^{2023} by 7 ?

Math 9 placement test 2022

1. Open the parentheses and expand the following expressions
a. $(a+3 b)^{2}=$
b. $(a-b)^{3}=$
2. Solve the inequality

$$
x+\frac{1}{x}>4.25
$$

3. Factor the following expressions
a. $\quad a^{2}-b^{2}=$
b. $a^{3}-b^{3}=$
c. $a^{3}+b^{3}=$
d. $1+a+a^{2}+a^{3}=$
4. Alice, Bob, Charlie, and Diana are buying ice cream. The store has 15 different flavors of ice cream. How many ways there are for them to choose if each kid chooses one ice cream flavor? How will the answer change if in addition, we require that no two of them choose the same flavor?
5. Find the coefficient of x^{2} in the polynomial $(2 x-1)^{8}$
6. How many divisors does the number 360 have?
7. What is the last digit of of 7^{2021}.
8. Given angle $\angle A O B$, construct the angle bisector using straightedge and compass. (You can do your construction online here: https://www.geogebra.org/geometry/nrn7t5nr)

Math 9 placement test 2021

1. Open the parentheses and expand the following expressions
a. $(a+3 b)^{2}=$
b. $(a-b)^{3}=$
2. Solve the inequality

$$
x+\frac{1}{x}>4.25
$$

3. Factor the following expressions
a. $\quad a^{2}-b^{2}=$
b. $a^{3}-b^{3}=$
c. $a^{3}+b^{3}=$
d. $1+a+a^{2}+a^{3}=$
4. Alice, Bob, Charlie, and Diana are buying ice cream. The store has 15 different flavors of ice cream. How many ways there are for them to choose if each kid chooses one ice cream flavor? How will the answer change if in addition, we require that no two of them choose the same flavor?
5. Find the coefficient of x^{2} in the polynomial $(x+2)^{8}$
6. How many divisors does the number 360 have?
7. What is the last digit of of 7^{2021}.
8. Given angle $\angle A O B$, construct the angle bisector using straightedge and compass. (You can do your construction online here: https://www.geogebra.org/geometry/nrn7t5nr)

Math 9 placement test 2020

1. Open brackets and expand the following expressions
a. $(a+b)^{2}=$
b. $\quad(a-b)^{3}=$
2. Factor the following expressions
a. $a^{2}-b^{2}=$
b. $a^{3}-b^{3}=$
c. $a^{3}+b^{3}=$
d. $1+a+a^{2}+a^{3}=$
3. Find the remainder of 2020^{2020} upon division by 3 .
4. Solve the equation

$$
x+\frac{1}{x}=4 \frac{1}{4}
$$

5. Eight teams have reached the quarter-finals of the soccer World Cup.
a. How many ways are there for these teams to be paired to play the quarter-final games?
b. How many different outcomes of which team wins which medal (gold, silver, bronze) are possible?
6. Trapezoid $A B C D$ is inscribed in a circle of radius r as shown in the Figure. The longer base of the trapezoid is equal to diameter, $|A B|=2 r$, while the shorter bas equals r. Find the area of the trapezoid $A B C D$.

Math 9 placement test 2019

1. Factor the following expressions
a. $a^{2}-b^{2}=$
b. $a^{3}-b^{3}=$
c. $a^{3}+b^{3}=$
d. $1+a+a^{2}+a^{3}=$
2. Find the coefficient of x^{7} in the polynomial $(1+2 x)^{9}$.
3. Let x_{1}, x_{2} be roots of the equation $x^{2}=x+1$. Find $\frac{1}{x_{1}}+\frac{1}{x_{2}}$.
4. Find the remainder of 2^{2019} upon division by 7 .
5. Let $A B C D$ be a trapezoid, with bases $A D$ and $B C$, and let E, F be midpoints of sides $A B, C D$ respectively. If $B C=2 \mathrm{~cm}, A D=6 \mathrm{~cm}$, then what is $E F$? Can you prove your answer?

Math 9 placement test 2018

6. Open brackets and expand the following expressions
a. $(a+b)^{2}=$
b. $\quad(a-b)^{3}=$
7. Factor the following expressions
a. $\quad a^{2}-b^{2}=$
b. $a^{3}-b^{3}=$
c. $a^{3}+b^{3}=$
d. $1+a+a^{2}+a^{3}=$
8. Solve the following inequality. Write your answer as a set of possible values for x.

$$
\frac{(x+2)^{2}(x-7)}{x+3} \leq 0
$$

9. Find the remainder of 2^{2019} upon division by 7 .
10. Let x_{1}, x_{2} be roots of the equation $x^{2}=x+1$. Find $\frac{1}{x_{1}}+\frac{1}{x_{2}}$.
11. Find the remainder upon division of 2^{2019} by 7 .
12. O is the center of the inscribed circle in triangle $A B C$. The angle $A O B$ is 135 degrees. Find the angle $A C B$.

Math 9 placement test 2017

1. Open brackets and expand the following expressions
a. $(a+b)^{2}=$
b. $\quad(a-b)^{3}=$
2. Factor the following expressions
a. $a^{2}-b^{2}=$
b. $a^{3}-b^{3}=$
c. $a^{3}+b^{3}=$
d. $1+a+a^{2}+a^{3}=$
3. Find the remainder of 3^{2017} upon division by 4 .
4. Solve the equation

$$
x+\frac{1}{x}=7 \frac{1}{7}
$$

5. Eight teams have reached the quarter-finals of the soccer World Cup.
a. How many ways are there for these teams to be paired to play the quarter-final games?
b. How many different outcomes of which team wins which medal (gold, silver, bronze) are possible?
6. Find the area of a square inscribed in
a. a quarter circle of radius r, as shown in the Figure below,

b. a semicircle circle of radius r as shown in the Figure below.

Math 9 placement test 2016

1. Open brackets and expand the following expressions
a. $(a+b)^{2}=$
b. $\quad(a-b)^{3}=$
2. Factor the following expressions
a. $\quad a^{2}-b^{2}=$
b. $a^{3}-b^{3}=$
c. $a^{3}+b^{3}=$
d. $1+a+a^{2}+a^{3}=$
3. Find the remainder of 3^{2016} upon division by 5 .
4. Solve the equation

$$
\frac{x^{2}+1}{x}-\frac{2 x}{x^{2}+1}=1
$$

5. Eight teams have reached the quarter-finals of the soccer World Cup.
a. How many ways are there for these teams to be paired to play the quarter-final games?
b. How many different outcomes of which team wins which medal (gold, silver, bronze) are possible?
6. Four equal segments are cut off a circle of radius r so that a square is obtained. Find the area of each of these segments.

Math 8-9 placement test 2015

1. How many ways are there to choose a team captain and 6 team members out of 15 candidates?
2. If x_{1}, x_{2} are roots of the square equation $x^{2}+2 x-7$, what is $x_{1} x_{2} ? \frac{1}{x_{1}}+\frac{1}{x_{2}}$?
3. Simplify the following expression

$$
\frac{\left(a^{2}-b^{2}\right)^{3}}{(a-b)(a+b)^{2}}
$$

4. How many "words" can you form by permuting the letters of the word "letter"? (A "word" is any combination of letters, not necessarily meaningful)
5. Points $A=(0,0), B=(2,0)$, and C on the coordinate plane form an equilateral triangle. What are the coordinates of point C ?
6. Factor $a^{4}-b^{4}$.
7. Corners of a square with the side a are cut off so that a regular octagon is obtained. Find the area of this octagon.
8. Solve the inequality

$$
\frac{x+5}{x^{2}-2 x-3}>0
$$

9. If we write the polynomial $(x+2)^{10}$ in the usual form $x^{10}+a_{1} x^{9}+a_{2} x^{8}+\ldots$, what would be the coefficient of x^{6} ?
10. Find all integer numbers which give remainder 2 upon division by 7 and remainder 5 upon division by 13.
11. Given triangle $A B C$, explain how to construct (using ruler and compass) a point which is at equal distance from points A, B, and C.

Math 9 placement test 2014

1. Open brackets and expand the following expressions
a. $(a+b)^{2}=$
b. $\quad(a-b)^{3}=$
2. Factor the following expressions
a. $\quad a^{2}-b^{2}=$
b. $a^{3}-b^{3}=$
c. $a^{3}+b^{3}=$
d. $1+a+a^{2}+a^{3}=$
3. Find the coefficient of x^{5} in the expression $(1+2 x)^{8}$
4. Find the remainder of 3^{2014} upon division by 7 .
5. Solve the equation

$$
\frac{x^{2}+1}{2 x}+\frac{2 x}{x^{2}+1}=2
$$

6. Eight teams have reached the quarter-finals of the soccer World Cup.
a. How many ways are there for these teams to be paired to play the quarter-final games?
b. How many different outcomes of which team wins which medal (gold, silver, bronze) are possible?
7. Corners of a square with the side a are cut off so that a regular octagon is obtained. Find the area of this octagon.
