MATH 8: HANDOUT 18 [FEB 4, 2024] EUCLIDEAN GEOMETRY 5: OUADRILATERALS: TRAPEZOID. MEDIAN CONCURRENCE

9. Special quadrilaterals: trapezoid

Today we continue the discussion of quadrilaterals with a trapezoid.

Definition. A quadrilateral is called a trapezoid, if one pair of opposite sides are parallel (these sides are called bases) and the other pair (maybe) is not.

If the other two sides are also parallel, then it becomes a parallelogram, so all theorems that apply to a trapezoid will also apply to a parallelogram, although some may become trivial. The most interesting property of a trapezoid is its midline:

Definition. T midline of a trapezoid ABCD ($AD \parallel BC$) is the segment connecting the midpoints of its sides (AB and CD).

Theorem 18. [Trapezoid midline] Let ABCD be a trapezoid, with bases AD and BC, and let E, F be midpoints of sides AB, CD respectively. Then $\overline{EF} \parallel \overline{AB}$, and EF = (AD + BC)/2.

(AD + BC)/2. **Idea of the proof:** draw through point F a line parallel to AB, as shown in the figure. Prove that this gives a paral-

lelogram, in which points E, F are midpoints of opposite

sides.

Of course, the above theorem is automatically fulfilled for a parallelogram, and the midline will be congruent to the sides it is parallel to.

10. Inresection point of medians

Theorem 19. [Intersection point of medians in a triangle] Let ABC be a triangle and AD, BE, and CF are its medians. Then AD, BE, and CF intersect at a single point M and each is divided by it 2:1 counting from their respective vertices: AM:MD=BM:ME=CM:MF=2:1.

First, let's prove that if BE and CF are medians intersecting at point M, and AD intersects them at the same point, then AD is also a median.

Proof. Continue line AD beyond poind D and mark point G such that GM = AM.

- **1.** M is the midpoint of AG, and E is the midpoint of AC; therefore ME is a midline of $\triangle AGC$ and $ME \parallel GC$;
- **2.** similarly, MF is a midline of $\triangle AGB$ and $MF \parallel GB$;
- **3.** from the above, BMGC is a parallelogram, and its diagonals BC and MG bisect each other, so D is the midpoint of BC and AD is a median.

Proving that |AM| = 2|MD| and also |BM| = 2|ME|, |CM| = 2|MF| is left as homework. By now, we know that the following lines in any triangle intersect at the same point:

- the three angle bisectors intersect at the same point (*incenter*), which is *equidistant from the three sides* of the triangle;
- the three perpendicular side bisectors intersect at the same point (*circumcenter*), which is *equidistant* from the three vertices (*corners*) of the triangle;
- the three altitudes intersect at the same point, which is called the *orthocenter*, and may be *inside or outside the triangle*;
- and the three medians intersect at the same point, which is called the *centroid*, and are divided by it 2:1 counting from the triangle vertices.

The centroid of a triangle (intersection point of the medians) has a remarkable property: it is a center of mass of a uniform triangle. You can check this by cutting out a triangle from a sheet of cardboard or other uniform material and balancing it on the tip of a needle. The same point will also be the center of mass if you place *three equal masses* at each vertex.

Homework

Note that you may use all results that are presented in the previous sections. This means that you may use any theorem if you find it a useful logical step in your proof. The only exception is when you are explicitly asked to prove a given theorem, in which case you must understand how to draw the result of the theorem from previous theorems and axioms.

- **1.** Finish the proof of Theorem 18: show that the length of the midline EF = (AD + BC)/2.
- **2.** Finish the proof of Theorem 19: show that the intersection point splits medians 2 : 1 counting from the vertex.
- 3. Review the proof that the trhree altitudes of a triangle intersect at a single point Given a triangle $\triangle ABC$, draw through each vertex a line parallel to the opposite side. Denote the intersection points of these lines by A', B', C' as shown in the figure.
 - (a) Prove that A'B = AC (hint: use parallelograms!)
 - (b) Show that B is the midpoint of $A^{T}C'$, and similarly for other two vertices.
 - (c) Show that altitudes of $\triangle ABC$ are exactly the perpendicular bisectors of sides of $\triangle A'B'c'$.
 - (d) Prove that the three altitudes of $\triangle ABC$ intersect at a single point.
- **4.** (Distance between parallel lines)

Let l,m be two parallel lines. Let $P \in l, Q \in m$ be two points such that $\overrightarrow{PQ} \perp l$ (by Theorem 6, this implies that $\overrightarrow{PQ} \perp m$). Show that then, for any other segment P'Q', with $P' \in l, Q' \in m$ and $\overrightarrow{P'Q'} \perp l$, we have PQ = P'Q'. (This common distance is called the distance between l,m)

- **5.** Let $\triangle ABC$ be a right triangle ($\angle A=90^\circ$), and let D be the intersection of the line parallel to \overline{AB} through C with the line parallel to \overline{AC} through B.
 - (a) Prove $\triangle ABC \cong \triangle DCB$
 - (b) Prove $\triangle ABC \cong \triangle BDA$
 - (c) Prove that \overline{AD} is a median of $\triangle ABC$.

6. Let $\triangle ABC$ be a right triangle ($\angle A = 90^{\circ}$), and let D be the midpoint of \overline{BC} . Prove that $AD = \frac{1}{2}BC$.