MATH 8: HANDOUT 18 [FEB 4, 2024]

EUCLIDEAN GEOMETRY 5: QUADRILATERALS: TRAPEZOID. MEDIAN CONCURRENCE

9. SPECIAL QUADRILATERALS: TRAPEZOID

Today we continue the discussion of quadrilaterals with a trapezoid.
Definition. A quadrilateral is called a trapezoid, if one pair of opposite sides are parallel (these sides are called bases) and the other pair (maybe) is not.

If the other two sides are also parallel, then it becomes a parallelogram, so all theorems that apply to a trapezoid will also apply to a parallelogram, although some may become trivial. The most interesting property of a trapezoid is its midline:
Definition. T midline of a trapezoid $A B C D(A D \| B C)$ is the segment connecting the midpoints of its sides ($A B$ and $C D)$.
Theorem 18. [Trapezoid midline] Let $A B C D$ be a trapezoid, with bases $A D$ and $B C$, and let E, F be midpoints of sides $A B, C D$ respectively. Then $\overline{E F} \| \overline{A B}$, and $E F=$ $(A D+B C) / 2$.

Idea of the proof: draw through point F a line parallel to $A B$, as shown in the figure. Prove that this gives a parallelogram, in which points E, F are midpoints of opposite sides.

Of course, the above theorem is automatically fulfilled for a parallelogram, and the midline will be congruent to the sides it is parallel to.

10. InRESECTION POINT OF MEDIANS

Theorem 19. [Intersection point of medians in a triangle] Let $A B C$ be a triangle and $A D, B E$, and $C F$ are its medians. Then $A D, B E$, and $C F$ intersect at a single point M and each is divided by it $2: 1$ counting from their respective vertices: $A M: M D=B M: M E=C M: M F=2: 1$.

First, let's prove that if $B E$ and $C F$ are medians intersecting at point M, and $A D$ intersects them at the same point, then $A D$ is also a median.

Proof. Continue line $A D$ beyond poind D and mark point G such that $G M=A M$.

1. M is the midpoint of $A G$, and E is the midpoint of $A C$; therefore $M E$ is a midline of $\triangle A G C$ and $M E \| G C$;
2. similarly, $M F$ is a midline of $\triangle A G B$ and $M F \| G B$;
3. from the above, $B M G C$ is a parallelogram, and its diagonals $B C$ and $M G$ bisect each other, so D is the midpoint of $B C$ and $A D$ is a median.

Proving that $|A M|=2|M D|$ and also $|B M|=2|M E|,|C M|=2|M F|$ is left as homework. By now, we know that the following lines in any triangle intersect at the same point:

- the three angle bisectors intersect at the same point (incenter), which is equidistant from the three sides of the triangle;
- the three perpendicular side bisectors intersect at the same point (circumcenter), which is equidistant from the three vertices (corners) of the triangle;
- the three altitudes intersect at the same point, which is called the orthocenter, and may be inside or outside the triangle;
- and the three medians intersect at the same point, which is called the centroid, and are divided by it 2:1 counting from the triangle vertices.
The centroid of a triangle (intersection point of the medians) has a remarkable property: it is a center of mass of a uniform triangle. You can check this by cutting out a triangle from a sheet of cardboard or other uniform material and balancing it on the tip of a needle. The same point will also be the center of mass if you place three equal masses at each vertex.

Homework

Note that you may use all results that are presented in the previous sections. This means that you may use any theorem if you find it a useful logical step in your proof. The only exception is when you are explicitly asked to prove a given theorem, in which case you must understand how to draw the result of the theorem from previous theorems and axioms.

1. Finish the proof of Theorem 18: show that the length of the midline $E F=(A D+B C) / 2$.
2. Finish the proof of Theorem 19: show that the intersection point splits medians $2: 1$ counting from the vertex.
3. Review the proof that the trhree altitudes of a triangie intersect at a single point Given a triangle $\triangle A B C$, draw through each vertex a line parallel to the opposite side. Denote the intersection points of these lines by $A^{\prime}, B^{\prime}, C^{\prime}$ as shown in the figure.
(a) Prove that $A^{\prime} B=A C$ (hint: use parallelograms!)
(b) Show that B is the midpoint of $A^{\prime} C^{\prime}$, and similarly for other two vertices.
(c) Show that altitudes of $\triangle A B C$ are exactly the perpendicular bisectors of sides of $\triangle A^{\prime} B^{\prime} c^{\prime}$.

(d) Prove that the three altitudes of $\triangle A B C$ intersect at a single point.
4. (Distance between parallel lines)

Let l, m be two parallel lines. Let $P \in l, Q \in m$ be two points such that $\overleftrightarrow{P Q} \perp l$ (by Theorem 6, this implies that $\overleftrightarrow{P Q} \perp m$)).
Show that then, for any other segment $P^{\prime} Q^{\prime}$, with $P^{\prime} \in l, Q^{\prime} \in m$ and $\overleftrightarrow{P^{\prime} Q^{\prime}} \perp l$, we have $P Q=P^{\prime} Q^{\prime}$. (This common distance is called the distance between l, m.)

5. Let $\triangle A B C$ be a right triangle ($\angle A=90^{\circ}$), and let D be the intersection of the line parallel to $\overline{A B}$ through C with the line parallel to $\overline{A C}$ through B .
(a) Prove $\triangle A B C \cong \triangle D C B$
(b) Prove $\triangle A B C \cong \triangle B D A$
(c) Prove that $\overline{A D}$ is a median of $\triangle A B C$.

6. Let $\triangle A B C$ be a right triangle ($\angle A=90^{\circ}$), and let D be the midpoint of $\overline{B C}$. Prove that $A D=\frac{1}{2} B C$.

