
MATH 8 [2023 NOV 5]
HANDOUT 7 : LOGIC 2 : GATES AND CIRCUITS

REMINDER: BASIC LOGIC OPERATIONS AND LAWS

• NOT (for example, NOTA): opposite of A: true if A is false, and false if A is true.
Commonly denoted by ¬A or (in computer science) !A.
• AND (for example AANDB): true if both A,B are true, and false if at least one false.

Commonly denoted by A ∧B
• OR (for example AORB): true if at least one of A,B is true, and false otherwise. Sometimes also

called “inclusive or” to distinguish it from the “exclusive or” described in problem 4 below.
Commonly denoted by A ∨B.
• XOR (for example, AXORB): exclusive or; true if exactly one of A,B is true and false otherwise
• NAND: not and: ANANDB = ¬(AANDB). True if at least one of A,B is false; false if both A,B are

true.
• NOR: not or:ANORB = ¬(AORB). True if both of A,B are false; false if at least one of A,B is true.

Some logic laws:
• Double negation:

¬(¬A) ⇐⇒ A

• De Morgan’s law:

¬(A ∧B) ⇐⇒ (¬A) ∨ (¬B)

¬(A ∨B) ⇐⇒ (¬A) ∧ (¬B)

LOGIC GATES IN ELECTRONICS

In electronics, it is common to have digital signals which take two values: LOW and HIGH (e.g., in certain
microcontrollers, voltage can range between 0–5V, and anything over 2.5V is considered HIGH, and anything
below, LOW). These two values can also be considered as two binary digits: LOW= 0, HIGH= 1, or as boolean
values: LOW= 0 =false, HIGH= 1 =true.

The basis of all modern computers are “logic gates”, chips that take two (or more) such inputs and produce
an output described by some truth table. (These chips contain transistors and diodes, but this is irrelevant
for us). For example, below is a typical such chip, containing four AND gates, each with two inputs:

In electronics, there are standard notations for different kinds of gates (AND, OR, NAND... ):

Combining such simple gates, one can create more complicated ones — and use that to create circuits
which take as input a collection of binary digits and produce as output some function such as sum or product
of inputs (interpreting n binary inputs as an n-digit binary number).

There is a number of online simulators that allow you to create and test such circuits virtually; in particu-
lar, we will use http://logic.ly/demo (Demo version is enough).

http://logic.ly/demo


PROBLEMS

1. Similarly to what we did with NAND, show that any logic operation can be expressed using NOR, that
is defined as: ANORB = NOT(AORB). Use the online circuit simulator to show that your formulas
indeed work.

2. Half adder: Adding two one-digit binary numbers is an operation which has two inputs, A and B,
and produces two outputs, X0, X1, which are just two digits of the sum A+B written in binary. E.g.,
1b + 1b = 10b (we use subscript b to indicate that this is a binary number, not a decimal one); thus,
when A = 1, B = 1, we have X0 = 0 (last digit of sum) and X1 = 1.
(a) Write a table of values for this operation, listing for each possible combination of A,B the values

of outputs X0, X1.
(b) Can you get X0 from A,B by using one of the standard logic gates listed above?
(c) Same question for X1

(d) Construct a circuit with two inputs and two outputs, consisting of the basic logic gates, which
implements this addition operation. [This is commonly known as half-adder.] Test your circuit
in http://logic.ly.

*3. Full adder: Can you construct a circuit which does binary addition of three inputs A,B,C (each
input being a 1-digit binary number)? This circuit is known as full adder.
Hint: use the half-adder you constructed in the previous problem as one of the building blocks — you can
use it to first add A and B. You only need one half-adder!
Test your final circuit in http://logic.ly.

4. Ripple-carry adder: Using the full adder constructed in the previous problem as a building block,
construct a circuit which adds two 3-digit binary numbers. Your circuit must have six inputs A0, A1, A2,
B0, B1, B2 (representing digits of A, B respectively) and four outputs X0, . . . , X3, representing digits
of the sum.
This is known as ripple-carry adder (carry because it implements usual addition with carry digits;
word “ripple” can be ignored for now).

5. Consider the circuit shown below.
Can you make a table of values, describing for each combination of values of the inputs S,R the value
of the output? [Hint: there is a catch there. . . ]
Test it on http://logic.ly

6. Show that for any value of A, expression A ∨ (¬A) is true (such expressions, which are true for all
values of variables involved, are called tautologies). This particular tautology is sometimes called
“law of excluded middle” (meaning there is no middle ground — A must be true or false).
Similarly, show that A ∧ (¬A) is always false.

http://logic.ly
http://logic.ly
http://logic.ly

	Reminder: Basic logic operations and laws
	Some logic laws:

	Logic gates in electronics
	Problems

