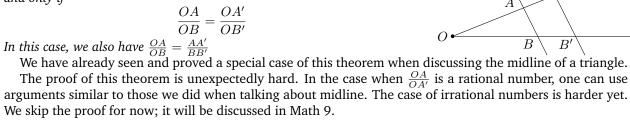
MATH 8: HANDOUT 21

EUCLIDEAN GEOMETRY 8: SIMILAR TRIANGLES. THALES'S THEOREM

THALES THEOREM

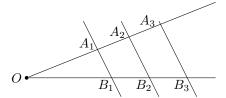
Theorem 31 (Thales Theorem). Let points A', B' be on the sides of angle $\angle AOB$ as shown in the picture. Then lines AB and A'B' are parallel if and only if

$$\frac{OA}{OB} = \frac{OA'}{OB'}$$



As an immediate corollary of this theorem, we get the following result.

Theorem 32. Let points A_1, \ldots, A_n and $B_1, \ldots B_n$ on the sides of an angle be chosen so that $A_1A_2 = A_2A_3 = \cdots = A_{n-1}A_n$, and lines A_1B_1 , A_2B_2 , ... are parallel. Then $B_1B_2 = B_2B_3 = \cdots = B_{n-1}B_n$.



Proof of this theorem is left to you as exercise.

SIMILAR TRIANGLES

Definition. Two triangles $\triangle ABC$, $\triangle A'B'C'$ are called *similar* ($\triangle ABC \propto \triangle A'B'C'$) if

$$\angle A \cong \angle A', \quad \angle B \cong \angle B', \quad \angle C \cong \angle C'$$

and the corresponding sides are proportional, i.e.

$$\frac{AB}{A'B'} = \frac{AC}{A'C'} = \frac{BC}{B'C'}$$

The common ratio $\frac{AB}{A'B'}=\frac{AC}{A'C'}=\frac{BC}{B'C'}$ is sometimes called the similarity coefficient. There are some similarity tests:

Theorem 33 (AA(A) similarity test). *If the corresponding angles of triangles* $\triangle ABC$, $\triangle A'B'C'$ *are equal:*

$$\angle A \cong \angle A', \quad \angle B \cong \angle B', \quad (\angle C \cong \angle C')$$

then the triangles are similar. (You need to compare only two pairs of angles, and then the third pair will be also equal)

Theorem 34 (SSS similarity test). If the corresponding sides of triangles $\triangle ABC$, $\triangle A'B'C'$ are proportional:

$$\frac{AB}{A'B'} = \frac{AC}{A'C'} = \frac{BC}{B'C'}$$

then the triangles are similar.

Theorem 35 (SAS similarity test). If two pairs of corresponding sides of triangles $\triangle ABC$, $\triangle A'B'C'$ are proportional:

$$\frac{AB}{A'B'} = \frac{AC}{A'C'}$$

and $\angle A \cong \angle A'$ then the triangles are similar.

Proofs of all of these tests can be obtained from Thales theorem.

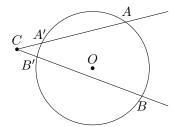
HOMEWORK

This homework may be more challenging than usual. Try to solve as many problems as you can, and we will discuss them all in class.

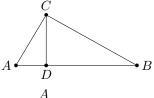
1. (A modification of Inscribed Angle Theorem.) Consider a circle λ and an angle whose vertex C is outside this circle and both sides intersect this circle at two points as shown in the figure. In this case, intersection of the angle with the circle defines two arcs: \widehat{AB} and $\widehat{A'B'}$.

Prove that in this case, $m\angle C = \frac{1}{2}(\widehat{AB} - \widehat{A'B'})$.

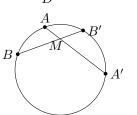
[Hint: draw line AB' and find first the angle $\angle AB'B$. Then notice that this angle is an exterior angle of $\triangle ACB'$.]



- **2.** Can you suggest and prove an analog of the previous problem, but when the point C is inside the circle (you will need to replace an angle by two intersecting lines, forming a pair of vertical angles)?
- **3.** Prove Theorem 32 (using Thales Theorem). Hint: let $k = \frac{OB_1}{OA_1}$; show that then $B_iB_{i+1} = kA_iA_{i+1}$.
- **4.** Using Theorem 32, describe how one can divide a given segment into 5 equal parts using ruler and compass.
- **5.** Given segments of length a, b, c, construct a segment of length $\frac{ab}{c}$ using ruler and compass.
- **6.** Let ABC be a right triangle, $\angle C = 90^{\circ}$, and let CD be the altitude. Prove that triangles $\triangle ACD$, $\triangle CBD$ are similar. Deduce from this that $CD^2 = AD \cdot DB$.

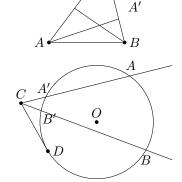


7. Let M be a point inside a circle and let AA', BB' be two chords through M. Show that then $AM \cdot MA' = BM \cdot MB'$. [Hint: use inscribed angle theorem to show that triangles $\triangle AMB$, $\triangle B'MA'$ are similar.]



- **8.** Let AA', BB' be altitudes in the acute triangle $\triangle ABC$.
 - (a) Show that points A', B' are on a circle with diameter AB.
 - (b) Show that $\angle AA'B' = \angle ABB'$, $\angle A'B'B = \angle A'AB$
 - (c) Show that triangle $\triangle ABC$ is similar to triangle $\triangle A'B'C$.
- **9.** (Chords intersectiong outside the circle). Consider circle λ , its chord AA', a point C on line (AA') outside the circle, and the tangent CD to the circle. Using similar triangles, prove that
 - $\bullet |CA| \cdot |CA'| = |CD|^2.$
 - for any chords AA', BB' intersecting at point C outside the circle, $|CA| \cdot |CA'| = |CB| \cdot |CB'|$.

Hint: connect point A to D and consider inscribed and tangent-chord angles.



B'