MATH 8: HANDOUT 20 [FEB 25, 2024]

EUCLIDEAN GEOMETRY 7: QUADRILATERALS WITH INSCRIBED AND CIRCUMSCRIBED CIRCLES

Quadrilaterals and circumscribed circles

In the previous class we discussed the remarkable relation between the inscribed and central angles in any circle. From this, we easily proved the following
Theorem 27. If a quadrilateral $A B C D$ can be circumscribed by a circle, then the sum of two opposite angles is equal to $180^{\circ}: \angle A B C+\angle A D C=180^{\circ}=\angle B A D+\angle B C D$.
The opposite is also true, i.e. the condition for the angles above is also sufficient that the quadrilateral $A B C D$ can be circumscribed by a circle. This can be proven using the fact that an arc of a circle is a special locus of points:
Theorem 28. For any segment $A B$, the locus of points C such that $\angle A C B=\alpha$ is the arc of a circle $\omega(O ;|O A|=|O B|)$, for which $A B$ is a chord, such that $\angle A O B=2 \alpha$.

Note that there are two arcs spanned by the same circle, and the inscribed angles with vertices on these arcs are supplementary (add up to 180°).

Proof. Indeed, any angle with vertex D inside the circle will be larger than α, and any angle with vertex outside the circle will be smaller than α. In the first case, this can be shown by continuing one side of the angle to intersection with the circle (C) and considering $\triangle A C D$; the second case is analogous.

Application of the same argument to quadrilaterals inscribed into a circle is shown below.

QuAdrilaterals with inscribed circles
A circle inscribed into a triangle, quadrilateral, or other polygon is tangential to all the sides. The radius drawn from the center to the point common with a particular side is perpendicular to it, and is thus equal to the distance from the center to the side. The center is therefore equidistant from all the sides.
We already know that one can always inscribe a circle into a triangle: the center of the inscribed circle is the common intersection point of the three angle bisectors. However, a circle can be inscribed only into special quadrilaterals. Similar to the triangle, the in-center must lie on the angle bisector intersection, but it is not easy to check that all four of them intersect at the same point ("concur"). For this, we have a theorem about tangential segments to a circle drawn from from the same outside point:
Theorem 29. Let A be a point outside a circle $\omega(O, R)$ and $A P, A Q$ are
 tangential to it $(P, Q \in \omega)$. Then $|A P|=|A Q|$.

Proof is straightforward and left as an exercise.

Theorem 30. A circle can be inscribed into a quadrilateral $A B C D$ if and only if the sum of lengths of two opposing sides is equal to the sum of lengths of the other two opposing sides, i.e. $|A B|+|C D|=|A D|+|B C|$.
Proof. (1) First we prove that the condition is necessary: assume there is a circle inscribed into the quadrilateral and it has common points M, P, Q, N with sides $A B, B C, C D$, and $A D$, respectively. Then, using Theorem 29, we can immediately see that $|A M|=|A N|,|B M|=|B P|,|C P|=|C Q|$, and $|D Q|=|D N|$ and the condition is satisfied.

(2) Now let's prove that if $|A B|+|C D|=|A D|+|B C|$. First consider the case when $|A B|<|B C|$, then $|C D|>|A D|$. On side $B C$ mark point M such that $|B M|=|B A|$ and, similarly, on side $C D$ mark point F such that $|D F|=|D A|$. Note that also $|C F|=\mid C M$, and therefore $\triangle A D F, \triangle F C M$, and $\triangle M B A$ are isosceles.
Consider perpendicular bisectors to the sides of $\triangle A F M$: they must intersect at the same point O. At the same time, they are bisectors of angles $\angle A D C$, $\angle D C B$, and $\angle C B A$, therefore the intersection point O is equidistant from the four sides of quadrilateral $A B C D$ and a circle with center O can be
 inscribed into it. The proof of the case $|A B|>|B C|$ is completely analogous, and the case $|A B|=|B C|$ is left to you as homework.

The property that the sides of a triangle or a quadrilateral are eqiuidistant from the center allows one to calculate the area:
Theorem 31. The area of a polygon with inscribed circle of radius r and perimeter P is $S=\frac{1}{2} \operatorname{Pr}$.
The proof is left to you as a homework.

Homework

1. Show that

- a parallelogram can be circumscribed with a circle if and only if it is a rectangle;
- a trapezoid $A B C D A D \| B C$ can be circumscribed if and only if it is isosceles (its sides are equal $|A B|=|C D|$, or equivalently the angles at the same base are equal: $\angle D A B=\angle A D C$ or $\angle A B C=\angle D C B)$.

2. Finish the proof of Theorem 30 for the case $|A B|=|B C|$.
3. Prove Theorem 31.
4. In what kind of parallelogram can a circle be inscribed?
5. Can you inscribe a circle into a quadrilateral with sides (in order)
a) $2 \mathrm{~cm}, 2 \mathrm{~cm}, 3 \mathrm{~cm}, 3 \mathrm{~cm}$?
b) $5 \mathrm{~cm}, 3 \mathrm{~cm}, 1 \mathrm{~cm}, 3 \mathrm{~cm}$?
c) $2 \mathrm{~cm}, 5 \mathrm{~cm}, 3 \mathrm{~cm}, 4 \mathrm{~cm}$?
6. What is the area of a trapezoid with sides 5 cm and 7 cm and the radius of inscribed circle 2 cm ?
7. What is the area of a quadrilateral with two adjacent sides a and b, angle between them α, and the radius of inscribed circle r ?
8. Can you circumscribe a circle around a quadrilateral $A B C D$ if the ratios of angles $\angle A$: $\angle B: \angle C: \angle D$ are
a) $2: 3: 4: 3$?
b) $7: 2: 4: 5$?
