## MATH 8: HANDOUT 17 [JAN 28, 2024] <br> EUCLIDEAN GEOMETRY 4: QUADRILATERALS. MIDLINE OF A TRIANGLE.

## 9. Special quadrilaterals

In general, a figure with four sides (and four enclosed angles) is called a quadrilateral; by convention, their vertices are labeled in order going around the perimeter (so, for example, in quadrilateral $A B C D$, vertex $A$ is opposite vertex $C$ ). In case it is unclear, we use 'opposite' to refer to pieces of the quadrilateral that are on opposite sides, so side $\overline{A B}$ is opposite side $\overline{C D}$, vertex $A$ is opposite vertex $C$, angle $\angle A$ is opposite angle $\angle C$ etc.

Among all quadrilaterals, there are some that have special properties. In this section, we discuss three such types.

Definition. A quadrilateral is called

- a parallelogram, if both pairs of opposite sides are parallel
- a rhombus, if all four sides have the same length
- a trapezoid, if one pair of opposite sides are parallel (these sides are called bases) and the other pair is not.

These quadrilaterals have a number of useful properties.
Theorem 14. Let $A B C D$ be a parallelogram. Then

- $A B=D C, A D=B C$
- $m \angle A=m \angle C, m \angle B=m \angle D$
- The intersection point $M$ of diagonals $A C$ and $B D$ bisects each of them.

Proof. Consider triangles $\triangle A B C$ and $\triangle C D A$ (pay attention to the order of vertices!). By Axiom 4 (alternate interior angles), angles $\angle C A B$ and $\angle A C D$ are equal (they are marked by 1 in the figure); similarly, angles $\angle B C A$ and $\angle D A C$ are equal (they are marked by 2 in the figure). Thus, by ASA, $\triangle A B C \cong \triangle C D A$. Therefore, $A B=D C, A D=B C$, and $m \angle B=$ $m \angle D$. Similarly one proves that $m \angle A=m \angle C$.

Now let us consider triangles $\triangle A M D$ and $\triangle C M B$. In these triangles, angles labeled 2 are congruent (discussed above), and by Axiom 4, angles
 marked by 3 are also congruent; finally, $A D=B C$ by previous part. Therefore, $\triangle A M D \cong \triangle C M B$ by ASA, so $A M=M C, B M=M D$.

There are several ways you can recognize a parallelogram; in fact, conclusions in Theorem 14 are not only necessary, but also sufficient for a quadrilateral to be a paralellogram. Let's remember them as a single theorem:

Theorem 15. Any quadrilateral $A B C D$ is a parallelogram if either of the following is true:

- its opposite sides are equal ( $A B=C D$ and $A D=B C$ ), $\mathbf{O R}$
- two opposite sides are equal and parallel $(A B=C D$ and $A B \| C D), \mathbf{O R}$
- its diagonals bisect each other ( $A M=C M$ and $B M=D M$, where $A C \cap B D=M$ ), $\mathbf{O R}$
- its opposing angles are equal ( $\angle B A D=\angle B C D$ and $\angle A B C=\angle A D C$ ).

Proofs are left to you as a homework exercise.
Theorem 16. Let $A B C D$ be a rhombus. Then it is a parallelogram; in particular, the intersection point of diagonals is the midpoint for each of them. Moreover, the diagonals are perpendicular.
Proof. Since the opposite sides of a rhombus are equal, it follows from Theorem 15 that the rhombus is a parallelogram, and thus the diagonals bisect each other. Let $M$ be the intersection point of the diagonals; since triangle $\triangle A B C$ is isosceles, and $B M$ is a median, by Theorem 12, it is also the altitude.


## 10. Midline of a triangle

Properties of parallelograms are very useful for proving theorems, for example about a triangle midline.
Definition. A midline of a triangle $\triangle A B C$ is the segment connecting midpoints of two sides.
Theorem 17. If $D E$ is the midline of $\triangle A B C$, then $D E=\frac{1}{2} A C$, and $\overline{D E} \| \overline{A C}$.


Proof. Continue line $D E$ and mark on it point $F$ such that $D E=E F$.

1. $\triangle D E B \cong \triangle F E C$ by SAS: $D E=E F, B E=E C, \angle B E D \cong \angle C E F$.
2. $A D F C$ is a parallelogram: First, we can see that since $\triangle D E B \cong$ $\triangle F E C$, then $\angle B D E \cong \angle C F E$, and since they are alternate interior angles, $A D \| F C$. Also, from the same congruency, $F C=B D$, but $B D=A D$ since $D$ is a midpoint. Then, $F C=D A$. So we have $F C=D A$ and $F C \| D A$, and therefore $A D F C$ is a parallelogram.
3. That gives us the second part of the theorem: $D E \| A C$. Also, since $A D F C$ is a parallelogram, $A C=D F=2 \cdot D E$, and from here we get
 $D E=\frac{1}{2} A C$.

Alternatively, one can prove that a line parallel to one side of the triangle crosses another side in the middle, then it is a midline, and will cross the third side also in the middle.

## Homework

Note that you may use all results that are presented in the previous sections. This means that you may use any theorem if you find it a useful logical step in your proof. The only exception is when you are explicitly asked to prove a given theorem, in which case you must understand how to draw the result of the theorem from previous theorems and axioms.

1. Prove that in a parallelogram, sum of two adjacent angles is equal to $180^{\circ}$ :

$$
m \angle A+m \angle B=m \angle B+m \angle C=\cdots=180^{\circ}
$$

2. [We may have done some in class - you still need to write the proofs neatly] Prove Theorem 15 ; that a quadrilateral is a parallelogram if
(a) it has two pairs of equal sides;
(b) if two of its sides are equal and paraallel;
(c) if its diagonals bisect each other;
(d) if its opposite angles are equal.

Any of the above statements can be used as the definition of a parallelogram.
3. (Rectangle) A quadrilateral is called rectangle if all angles have measure $90^{\circ}$.
(a) Show that each rectangle is a parallelogram.
(b) Show that opposite sides of a rectangle are congruent.
(c) Prove that the diagonals of a rectangle are congruent.
(d) Prove that conversely, if $A B C D$ is a parallelogram such that $A C=B D$, then it is a rectangle.
4. Prove that in any triangle, the three perpendicular side bisectors intersect at a single point (compare with the similar fact about perpendicular bisectors - Problem 3 from Handout 16)
5. Show that in any triangle, its three midlines divide the original triangle into four triangles, all congruent to each other.
6. * Prove that in any triangle, its altitudes intersect at the same point.

Hint: consider a triangle and its three midlines from the previous problem; draw the perpendicular side bisectors to each side of the big triangle. Are they altitudes in some other triangle?

