MATH 7: HANDOUT 10 POKER PROBABILITIES

POKER PROBABILITIES

In the game of poker, a player is dealt five cards from a regular deck with 4 suits (\blacklozenge , \clubsuit , \diamondsuit , \heartsuit) with card values in the following order: A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A. We calculated probabilities of the following combinations: **Royal Flush:** 10, J, Q, K, A of any suit (Example: $10\heartsuit$, $J\heartsuit$, $Q\heartsuit$, $K\heartsuit$, $A\heartsuit$) There are only 4 of them. **Straight Flush:** Five cards in a row of the same suit (Example: $6\heartsuit, 7\heartsuit, 8\heartsuit, 9\heartsuit, 10\heartsuit$) Each of these can start from any card from A to 9, and be in each of the for suits: $9 \times 4 = 36$. Notice that we excluded royal flushes from out computation (if we start with 10, we get a Royal Flush). **Four of a kind:** Four cards of the same value, and one other random card (Example: $K\heartsuit$, K♠, K♦, K♣, 2♣) Which card $13 \times$ Which other value $12 \times$ Which other suit $4 = 13 \cdot 12 \cdot 4$. **Full House:** Three cards of the same value, and two cards of the same value (Example: K♡, K♠, K◊, 4♠, 4♣) Which card for $313 \times$ Which three suits $\binom{4}{3} \times$ Which card for a pair $12 \times$ Which two suits $\binom{4}{2} = 13\binom{4}{3} \cdot 12\binom{4}{2}$. **Flush:** Five cards of the same suit, not in order (Example: $3\heartsuit$, $6\heartsuit$, $8\heartsuit$, $J\heartsuit$, $A\heartsuit$) Which suit $4\times$ Which five cards $\binom{13}{5} = 4\binom{13}{5}$. We also need to exclude Royal Flushes and Straight Flushes, so the total is $4\binom{13}{5} - 40$. **Straight:** Five cards in order, possibly of different suits (Example: $5\heartsuit$, $6\clubsuit$, $7\diamondsuit$, $8\clubsuit$, $9\clubsuit$) Which card to start from (anything from A to 10) $10 \times$ Five suits $4^5 = 10 \cdot 4^5$. From here we also need to exclude Royal Flushes and Straight Flushes, so the final answer if $10 \cdot 4^5 - 40$. Triple: Three cards of the same value, and two other random cards (Example: K♡, K♠, K◊, 4♠, 2♣)
Which card (¹³₁) × Which three suits (⁴₃) × Which two other values (¹²₂) × Which two suits for these two random card 4² = (¹³₁)(⁴₃)(¹²₂)4².
Two pairs: Two cards of the same value, two cards of the same value, and a random card (Example: K♡, K♠, 100, 10, 44) Which two cards $\binom{13}{2}$ × Two suits for each of pair $\binom{4}{2}^2$ × Remaining value 11× Remaining suit $4 = \binom{13}{2}\binom{4}{2}^2$ $11 \cdot 4.$

Pair: Two cards of the same value, and three other random cards (Example: K \heartsuit , K \blacklozenge , Q \diamondsuit , 4 \blacklozenge , 2 \clubsuit) Which card $\binom{13}{1} \times$ Which two suits $\binom{4}{2} \times$ Which three other values $\binom{12}{3} \times$ Which three suits for these three random card $4^3 = \binom{13}{1}\binom{4}{2}\binom{12}{3}4^3$.

To calculate probabilities of each of these combinations, we have to divide the counts above by the total number of poker hands, which is $\binom{52}{5}$. The table below gives the probabilities and odds:

Combination	Count	Probability	Odds
Royal Flush	4	0.000154%	1:649,740
Straight Flush	36	0.00139%	1:72,192
Four of a Kind	$13 \cdot 12 \cdot 4$	0.024%	1:4,165
Full House	$13\binom{4}{3} \cdot 12\binom{4}{2}$	0.1441%	1:693
Flush	$4\binom{13}{5} - 40$	0.1965%	1:508
Straight	$10\cdot 4^5-40$	0.3925%	1:254
Triple	$\binom{13}{1}\binom{4}{3}\binom{12}{2}4^2$	2.1128%	1:46.3
Two Pairs	$\binom{13}{2}\binom{4}{2}^2 \cdot 11 \cdot 4$	4.7539%	1:20
Pair	$\binom{13}{1}\binom{4}{2}\binom{12}{3}4^3$	42.2569%	1:1.37
Nothing		50.1177%	1:0.995