MATH 7：HANDOUT 10
 POKER PROBABILITIES

Poker Probabilities

In the game of poker，a player is dealt five cards from a regular deck with 4 suits $(\boldsymbol{\oplus}, \boldsymbol{\leftrightarrow}, \diamond, \diamond)$ with card values in the following order：A， $2,3,4,5,6,7,8,9,10, \mathrm{~J}, \mathrm{Q}, \mathrm{K}, \mathrm{A}$ ．We calculated probabilities of the following combinations：

There are only 4 of them．
Straight Flush：Five cards in a row of the same suit（Example： $6 \Omega, 7 \Omega, 80,9 \Omega, 10 毋$ ）
Each of these can start from any card from A to 9 ，and be in each of the for suits： $9 \times 4=36$ ．Notice that we excluded royal flushes from out computation（if we start with 10，we get a Royal Flush）．
Four of a kind：Four cards of the same value，and one other random card（Example： $\mathrm{K} \oslash, K \boldsymbol{\phi}, \mathrm{~K} \diamond, \mathrm{~K} \boldsymbol{\&}, 2 \boldsymbol{\&}$ ） Which card $13 \times$ Which other value $12 \times$ Which other suit $4=13 \cdot 12 \cdot 4$ ．
Full House：Three cards of the same value，and two cards of the same value（Example： $\mathrm{K} \oslash, \mathrm{K} \mathbf{\uparrow}, \mathrm{K} \diamond$ ，4母，4母） Which card for $313 \times$ Which three suits $\binom{4}{3} \times$ Which card for a pair $12 \times$ Which two suits $\binom{4}{2}=13\binom{4}{3} \cdot 12\binom{4}{2}$ ．
Flush：Five cards of the same suit，not in order（Example： $3 \bigcirc, 6 \odot, 8 \bigcirc, \mathrm{~J} \odot, A \odot$ ）
Which suit $4 \times$ Which five cards $\binom{13}{5}=4\binom{13}{5}$ ．We also need to exclude Royal Flushes and Straight Flushes， so the total is $4\binom{13}{5}-40$ ．
Straight：Five cards in order，possibly of different suits（Example： $5 \bigcirc, 6 \boldsymbol{\uparrow}, 7 \diamond, 8 \mathbf{\uparrow}, 9 \boldsymbol{\beta}$ ）
Which card to start from（anything from A to 10） $10 \times$ Five suits $4^{5}=10 \cdot 4^{5}$ ．From here we also need to exclude Royal Flushes and Straight Flushes，so the final answer if $10 \cdot 4^{5}-40$ ．
Triple：Three cards of the same value，and two other random cards（Example： $\mathrm{K} \vee, \mathrm{K} \boldsymbol{\phi}, \mathrm{K} \diamond, 4 \boldsymbol{\uparrow}, 2 \boldsymbol{\&}$ ）
Which card $\binom{13}{1} \times$ Which three suits $\binom{4}{3} \times$ Which two other values $\binom{12}{2} \times$ Which two suits for these two random card $4^{2}=\binom{13}{1}\binom{4}{3}\binom{12}{2} 4^{2}$ ．
Two pairs：Two cards of the same value，two cards of the same value，and a random card（Example：K \oslash ， $\mathrm{K} \boldsymbol{\phi}$ ， $10 \diamond$ ，10中，4\＆）

Which two cards $\binom{13}{2} \times$ Two suits for each of pair $\binom{4}{2}^{2} \times$ Remaining value $11 \times$ Remaining suit $4=\binom{13}{2}\binom{4}{2}^{2}$ ． $11 \cdot 4$.
Pair：Two cards of the same value，and three other random cards（Example： $\mathrm{K} \oslash, \mathrm{K} \mathbf{\phi}, \mathrm{Q} \diamond, 4 \boldsymbol{\uparrow}, 2 \boldsymbol{\phi}$ ）
Which card $\binom{13}{1} \times$ Which two suits $\binom{4}{2} \times$ Which three other values $\binom{12}{3} \times$ Which three suits for these three random card $4^{3}=\binom{13}{1}\binom{4}{2}\binom{12}{3} 4^{3}$ ．
To calculate probabilities of each of these combinations，we have to divide the counts above by the total number of poker hands，which is $\binom{52}{5}$ ．The table below gives the probabilities and odds：

Combination	Count	Probability	Odds
Royal Flush	4	0.000154%	$1: 649,740$
Straight Flush	36	0.00139%	$1: 72,192$
Four of a Kind	$13 \cdot 12 \cdot 4$	0.024%	$1: 4,165$
Full House	$13\binom{4}{3} \cdot 12\binom{4}{2}$	0.1441%	$1: 693$
Flush	$4\binom{13}{5}-40$	0.1965%	$1: 508$
Straight	$10 \cdot 4^{5}-40$	0.3925%	$1: 254$
Triple	$\binom{13}{1}\binom{4}{3}\binom{12}{2} 4^{2}$	2.1128%	$1: 46.3$
Two Pairs	$\binom{13}{2}\binom{4}{2} \cdot 11 \cdot 4$	4.7539%	$1: 20$
Pair	$\binom{13}{1}\binom{4}{2}\binom{12}{3} 4^{3}$	42.2569%	$1: 1.37$
Nothing		50.1177%	$1: 0.995$

