Math 6: Homework 2.9:

Factorization and Identities

When handling with large algebraic expressions, it is often possible to simplify them. One way of doing this is by factorization. As its name suggests, this method consists of finding a common factor in two or more terms. For example, in the following expression

$$
7 x+9 x-5 x
$$

the three terms share the common factor x. Therefore, we can rewrite this expression as:

$$
7 x+9 x-5 x=(7+9-5) x=11 x .
$$

In general, we will have the following identities:

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)^{2}=a^{2}-2 a b+b^{2} \\
& (a+b)(a-b)=a^{2}-b^{2}
\end{aligned}
$$

1. Simplify the following fractions and show the answer in the exponent form:
a) $\left(\frac{3 a^{5} b^{2}}{21 a b}\right)^{2} \cdot \frac{7^{4}}{a^{16} b^{2}}$
b) $\frac{3^{5} \cdot 3^{-5}}{3^{9}}$
c) $\frac{1}{x-1}-\frac{2}{2 x-1}$
d) $b-\frac{a b}{a-b}$
2. Factor the following expressions:
a) $(a+4)^{2}-8(a+3)+8$
b) $(b+2)^{2}-(b+4)(b-4)$
c) $(5 c-3)^{2}+(12 c-4)^{2}-4 c$
3. Show that the left-hand side (LHS) = right-hand side (RHS):
a) $(a+b)^{2}+c(a+b)=(a+b)(a+c)+(a+b) b$
b) $x^{2}(x+1)-x-1=x(x+1)^{2}-(x+1)^{2}$
4. Find three consecutive integer numbers such that the sum of the first, twice the second, and three times the third is -70 . (write and solve the equation)
5. Sixty more than nine times a number is the same as two less than seven times the number. Find the number.
