Math 6: Homework 2.7

Coordinate Geometry

In this section of the course, we are going to study coordinate geometry. The basic notion is the coordinate plane - a plane with a given fixed point, called the origin, as well as two perpendicular lines - axes, called the x-axis and the y-axis.

The midpoint

The midpoint M of a segment $A B$ with endpoints $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ has coordinates:

$$
M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Straight line

This curve is called the graph of the given relation.
Every relation (equation) of the form:

$$
y=m x+b
$$

where m, b are some numbers, defines a straight line. The slope of this line is determined by m : as you move along the line, y changes m times as fast as x, so if you increase x by 1 , then y will increase by m. And b is a y-intercept, it determines where the line intersects the vertical axis (y-axis).

In other words, given two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ slope can be computed by dividing change of y : $y_{2}-y_{1}$ by the change of $x: x_{2}-x_{1}$:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Two non-vertical lines are parallel if and only if they have the same slope.

Perpendicular lines slope give -1 if multiplied. Given any two lines k and l in the coordinate plane, let their slopes be u and v. If $k \perp l$, then $u v=-1$. On the other hand, if $u v=-1$, then $k \perp l$.

The distance between two points

$P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ is given by the following formula:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

This formula is a straightforward consequence of the Pythagoras' Theorem.

Homework 2.7

Solve it on a separate piece of paper

1. 3 points $A(0,0), B(1,3), D(5,-2)$ are vertices of a parallelogram $A B C D$. What are the coordinates of point C ?
2. In this problem you will find equations that describe some lines.
a. What is the equation whose graph is the y-axis?
b. What is the equation of a line whose points all lie 5 units above the x-axis?
c. Is the graph of $y=x$ a line? Draw it.
d. Find the equation of a line that contains the points $(1,-1),(2,-2)$, and $(3,-3)$.
3. For each of the equations below, draw the graph, then draw the perpendicular line (going through the point $(0,0)$) and then write the equation of the perpendicular line:
(a) $y=3 x$
(b) $y=-1 / 2 x$
4. Find the equation of the line through $(1,1)$ with slope 2 .
5. Find the equation of the line through points $(1,1)$ and (3,7). [Hint: what is the slope?]
6. Find the intersection point of a line $y=x-3$ and a line $y=-2 x+6$. Sketch the graphs of these lines.
7. a) Find the area of a triangle with vertices at $(5,4),(0,3),(-1,-2)$.
b) Show that the quadrilateral with the vertices at $(-1,-2),(4,-1),(5,4),(0,3)$ is a rhombus. Then, find its area.
8. Sketch graphs of the following functions:
(a) $y=|x|+1$
(b) $y=|x+1|$
(c) $y=|x-5|+1$
9. It is conventional to consider lines parallel to the x-axis as having slope 0 , and lines parallel to the y-axis as having slope infinity or undefined. Prove that two sides of a triangle cannot be parallel and explain why this creates a problem in defining the slope of a line parallel to the x or y axes.
