MATH 6: HOMEWORK 2.5 RULER AND COMPASS CONSTRUCTIONS 2

Constructions with ruler and compass

Here is a summary of operations we can do using a ruler and compass. You can freely use any of them in the problems below.

1. Construct the midpoint of a given segment $A B$
2. Construct the perpendicular bisector of segment $A B$, i.e. a line that goes through the midpoint of $A B$ and is perpendicular to $A B$.
3. Given a line l and a point A on l, construct a perpendicular to l through A.
4. Given a line l and a point P outside of l, construct a perpendicular to l through P.
5. Given an angle $A O B$, construct the angle bisector (i.e., a ray $O M$ such that $\angle A O M \cong$ $\angle B O M)$.
The following section explains the importance of these constructions.

Perpendicular bisector and angle bisector

1. If two points A, B are on a circle, then the center of this circle lies on perpendicular bisector to $A B$ (i.e., a line that goes through the midpoint of $A B$ and is perpendicular to $A B$).

2. If a circle is inscribed in the angle $A B C$, then the center of this circle lies on the angle bisector.

MATH 6: HOMEWORK 2.5

All constructions below are to be done using ruler and compass only! Do it on a separate piece of paper!

1. Construct a rectangle with one side a and diagonal d.
2. Given length a, construct a square with side a.
3. Given a circle, construct an equilateral triangle inscribed in it. This means that all the vertices of the triangle are on the circumference.
4. Given a circle, construct a regular hexagon inscribed in the circle.
5. Given a circle, find its center.
6. Given a circle and a point P in its circumference, draw a line tangent to the circle that goes through P. Hint: A tangent line is perpendicular to the radius connecting the intersection of the line and the circle and the center of the circle.
7. Given a triangle $\triangle A B C$, construct a circle inscribed in the triangle (as shown on the right). Hint: The center of the circle will be at the intersection of the angle bisectors of the triangle.

8. Given a triangle $\triangle A B C$, construct a circle circumscribed around the triangle (as shown on the right). Hint: Draw the perpendicular bisectors of two sides of the triangles.

9. Six grasshoppers sit on a road. Every minute one grasshopper jumps 1 foot in one direction (along the road), and another grasshopper jumps 1 foot in the opposite direction. If initially the grasshoppers were at positions $1 \mathrm{ft}, 2 \mathrm{ft}, \ldots, 6 \mathrm{ft}$ (measured from some point on the road), is it possible that after some time they all will all gather at the same place on the road?
