## Math 6: Homework 2.3 Geometric Sequences Continued

## Geometric Sequence (Reminder)

A sequence of numbers is a geometric sequence or geometric progression if the next number in the sequence is the current number times a fixed constant called the common ratio or $q$.
The sequence $6,12,24,48, \ldots$ is a geometric sequence because the next number is obtained from the previous by multiplication by $\mathrm{q}=2$.

$$
\mathrm{b}_{\mathrm{n}}=\mathrm{b}_{1} \mathrm{q}^{\mathrm{n}-1}
$$

## A Property of Geometric Sequences

A property of a geometric sequence is that any term is the geometric mean of its neighbors. For example, sequence 6,12, 24, 48... :

$$
\begin{gathered}
b_{2}=\sqrt{b_{1} \cdot b_{3}}=\sqrt{6 \cdot 24}=12 \\
b_{n}=\sqrt{b_{n-1} \cdot b_{n+1}}
\end{gathered}
$$

## Sum of a Geometric Sequence

Let's try to sum $1+2+4+\cdots+64$. For purposes of working with this sum, let it be called $S$, i.e. $S=1+2+4+\cdots+64$. Then I can notice that $2 S=2+4+8+\cdots+128$; subtract the original sum to get $2 S-S=128-1$ (everything else cancels out). Thus $S=127$. What did we do here? We multiplied by 2 , which lined up the terms of the sequence to the next term over. In the geometric sequence $1,2, \ldots, 64$, the common ratio is $q=2$.

Let's do this in general. Let $a_{1}, \ldots, a_{n}$ be a geometric sequence with common ratio $q$.

$$
S_{n}=b_{1}+b_{2}+b_{3}+\cdots+b_{n}=\frac{b_{1}\left(1-q^{n}\right)}{1-q}
$$

# Math 6: Homework 2.3 Geometric Sequences Continued 

## Problems

1. Write the first 5 terms of a geometric progression if $\mathrm{b}_{1}=-20$ and $q=1 / 2$
2. Calculate: $S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}$.
3. After opening his business, John earned $7000 \$$ in the first month. Each next month his income increased by $400 \%$ compared to the previous one. How much did he earn in the first 4 months?
4. Calculate: $S=1-2+2^{2}-2^{3}+2^{4}-2^{5}+\cdots-2^{15}$
5. Simplify the following expression: $1+x+x^{2}+x^{3}+\cdots+x^{100}$
