Math 6: Homework 2.1
 Arithmetic Sequences

Arithmetic sequence

A sequence of numbers (typically but not always integers) is an arithmetic sequence if the difference between consecutive terms is the same number, the common difference, let's call it d.
For example, let's consider the sequence: $1,5,9,13,17, \ldots$
The first term in the sequence is $a_{1}=1$, the second is $a_{2}=5$, and so on. The difference is $d=4$.
What is the $n^{\text {th }}$ term? For example what is a_{100} ?

$$
\begin{aligned}
& a_{1}=1 \\
& a_{2}=a_{1}+d=1+4=5 \\
& a_{3}=a_{2}+d=\left(a_{1}+d\right)+d=a_{1}+2 d=(1+4)+4=1+2 \times 4=9 \\
& a_{4}=a_{3}+d=\left(a_{2}+d\right)+d=\left(\left(a_{1}+d\right)+d\right)+d=a_{1}+3 d=1+3 \times 4=13 \\
& \qquad a_{n}=a_{1}+(n-1) d
\end{aligned}
$$

So $a_{100}=a_{1}+99 d=1+99 \times 4=397$

Property of an arithmetic sequence

A property of an arithmetic sequence is that any term is the arithmetic mean of its neighbors.

$$
a_{n}=\frac{a_{n-1}+a_{n+1}}{2}
$$

Sum of an arithmetic sequence

$$
S=a_{1}+a_{2}+a_{3}+\ldots+a_{n}=n \cdot \frac{a_{1}+a_{n}}{2}
$$

AMC 8 announcement:

The contest will be given on Th, Jan 18, 2024 (tentatively at 6pm).
If you want to register, please fill this form:
https://forms.gle/qt2X78cRH8SgQ9PH8

Problems

1. What are the first 2 terms of the arithmetic sequence $a_{1}, a_{2},-9,-2,5, \ldots$?
2. Find the common difference d in an arithmetic sequence if the 9 -th term is 18 and the 11 -th term is 44 .
3. Find the sum of the first 100 terms if $a_{1}=-1$ and $d=1$.
4. Find the sum of the first 1000 odd numbers.
5. Find the following sum:

$$
2+4+\cdots+2024
$$

6. Prove that, given any arithmetic sequence, if I multiply each term by the same number and then add the same number to each term, the result is still an arithmetic sequence.
7. Simplify the following expression:

$$
\frac{2}{\frac{1}{1-\frac{1}{3}}-1} \div \frac{\frac{1}{2}}{\frac{2}{3}-\frac{1}{4}}
$$

8. In a given arithmetic progression, the first term is 6 , and the 87 -th term is 178 . Find the common difference of this arithmetic progression and give the value of the first five terms.
9. The 3-rd term of the arithmetic progression is equal to 1 . The 10 -th term of it is three times as much as the 6-th term. Find the first term and the common difference. (Hint: Use the formula for the n-th term of the progression and write what is given in the problem using this formula.)
10. *The sum of the first 20 terms of an arithmetic progression is 200 , and the sum of the next 20 terms is -200 . Find the sum of the first hundred terms of the progression.
