MATH 6

HANDOUT 6: SETS PART 2

New material introduced today:
We say that set A is a subset of B (notation: $A \subseteq B$) if every element of A is also an element of $B: x \in A \Rightarrow x \in B$. Note that A can be equal to B. (Sometimes the notation $A \subset B$ is used, in which case it may or may not include equality, but we will use \subseteq for both cases.)
Logically, we write the definition of $A \subseteq B$ as, for all $x, x \in A \Longrightarrow x \in B$.
Additionally, it is useful to note that $(A \subseteq B) \operatorname{AND}(B \subseteq A)$ means that $A=B$.

Counting

We denote by $|A|$ the number of elements in a set A (if this set is finite). For example, if $A=$ $\{a, b, c, \ldots, z\}$ is the set of all letters of English alphabet, then $|A|=26$.
If we have two sets that do not intersect, then $|A \cup B|=|A|+|B|$: if there are 13 girls and 15 boys in the class, then the total is 28 .

If the sets do intersect, the rule is more complicated:

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

1. 150 people at a Van Halen concert were asked if they knew how to play piano, drums or guitar.

- 18 people could play none of these instruments.
- 10 people could play all three of these instruments.
- 77 people could play drums or guitar but could not play piano.
- 73 people could play guitar.
- 49 people could play at least two of these instruments.
- 13 people could play piano and guitar but could not play drums.
- 21 people could play piano and drums.

How many people can play piano? drums?
2. Find sets A, B, C if you know that: $A \cup B=\{1,3,4,5,7\}$
$B \cup C=\{1,2,4,5,6,8,9\}$
$(A \cup B) \cap C=\varnothing \quad(B \cup C) \cap A=\{1,5\}$
3. Find A if you know that:

$$
A \cup\{5,7\}=\{3,5,7,8\} \quad A \cap\{1,2,5,7\}=\{5,7\}
$$

4. For each of the sets below, draw it on the number line and find its complement (=opposite):
(a) $[-5,5]$
(b) $(-\infty, 2.5) \cap[1.2,+\infty)$
(c) 1
*5. (a) Let $S=\{1,2,3,4,5\}$ and let $A \subseteq S$ such that A is a subset of exactly 4 subsets of S, including S itself and A itself. Can you determine how many elements are in A ?
(b) Let $T_{n}=\{1,2,3, \ldots, n\}$, and similarly $T_{k}=\{1,2,3, \ldots, k\}$, with $k<n$. How many subsets of T_{n} is T_{k} a subset of? Don't forget to count T_{n} and T_{k} themselves.
*6. Let A be the set of all ordered pairs of numbers (x, y) such that $0<x<1$, and B be the set of all ordered pairs of numbers (x, y) such that $0<y<1$.
(a) Is $(0.5,1)$ in A ? Is it in B ?
(b) Determine whether the following points are in $A \cup B:(0.1,0.2),(0.1,2.5),(1.1,1.1)$, $(-2,0.5)$.
(c) Prove $(r, s) \in(A \cup B) \Longleftrightarrow(1-s, 1-r) \in(A \cup B)$.
