MATH 6: HANDOUT 16 **GEOMETRIC SEQUENCES**

GEOMETRIC SEQUENCES

A sequence of numbers is a **geometric sequence** or **geometric progression** if if the next number in the sequence is the current number times a fixed constant called the **common ratio** or q.

Example: The sequence 6, 12, 24, 48,... is a geometric sequence because the next number is obtained from the previous by multiplication by q=2.

We can also find the n-th term if we know the 1st term and q.

Example: What is a_{10} in the example above?

$$a_1 = 6$$

 $a_2 = a_1q = 6 \cdot 2 = 12$
 $a_3 = a_2q = (a_1q)q = a_1q^2 = 6 \cdot 2^2 = 24$

The pattern is:

$$a_n = a_1 q^{n-1}$$

 $a_{10} = a_1 q^9 = 6 \cdot 2^9 = 6 \cdot 512 = 3072$

Properties of a Geometric Sequence. Any term is the **geometric mean** of its neighbors:

$$a_n = \sqrt{a_{n-1} \cdot a_{n+1}}$$

Proof:

$$a_n = a_{n-1}q$$
$$a_n = a_{n+1}/q$$

Multipluying these two equalities gives us:

$$a_n^2 = a_{n-1} \cdot a_{n+1}$$

from where we can get what we need.

PROBLEMS

- 1. Write out the first four terms of each of the following geometric sequences, given the first term b_1 and common ration q.
 - (a) $b_1 = 1$ and q = 3
 - (b) $b_1 = 1$ and $q = \frac{1}{2}$

 - (c) $b_1 = -10$ and $q = \frac{1}{2}$ (d) $b_1 = 27$ and $q = -\frac{1}{3}$
- **2.** What are the first two terms of the geometric progressions $a_1, a_2, 24, 36, 54, \dots$?
- **3.** Find the common ratio of the geometric progressions $1/2, -1/2, 1/2, \ldots$ What is a_{10} ?
- 4. A geometric progression has 99 terms, the first term is 12 and the last term is 48. What is the 50th term?