MATH 5: SQUARE ROOT. PYTHAGOREAN THEOREM.

SQUARE ROOTS

Square root of a is a number whose square is equal to a. For example: square root of 25 is 5, because $5^2 = 25$.

- Notation: square root of number *a* is commonly denoted \sqrt{a} .
- $\sqrt{ab} = \sqrt{a}\sqrt{b}$, but $\sqrt{a+b}$ is **not** equal to $\sqrt{a} + \sqrt{b}$.

Pythagorean theorem: In a right triangle with legs *a*, *b* and hypotenuse *c*, one has

$$a^2 + b^2 = c^2$$
 ot $c = \sqrt{a^2 + b^2}$.

Proof: Consider the following picture:

In this square, the total area is

$$(a+b) \times (a+b) = a \times (a+b) + b \times (a+b) = a^2 + ab + ab + b^2 = a^2 + 2ab + b^2$$

On the other hand, the area of each triangle is $\frac{1}{2}ab$, and the area of shaded square is c^2 . Thus, we get

$$a^{2} + 2ab + b^{2} = 4 \times \frac{1}{2}ab + c^{2}$$

which gives $a^2 + b^2 = c^2$.

For example, in a square with side 1, the diagonal has length $\sqrt{2}$.

It is possible — but not easy — to find a right triangle where all sides are whole numbers. The easiest such triangle is the triangle with sides 3, 4, 5.

POWER $\frac{1}{2}$

We know how to raise numbers into whole powers:

 $a^n = a \times \cdots \times a.$

But what is $a^{\frac{1}{2}}$? **Example:** Let's try to figure out what $4^{\frac{1}{2}}$ is:

$$4^{\frac{1}{2}} \times 4^{\frac{1}{2}} = 4^{\frac{1}{2} + \frac{1}{2}} = 4^{1} = 4.$$

We can see that $4^{\frac{1}{2}}$ must be a number, such that if we multiply it by itself, we get 4. But this is just a square root of 4! So, we get:

 $4^{\frac{1}{2}} = \sqrt{4}.$

In general, this is also true:

 $a^{\frac{1}{2}} = \sqrt{a}.$

HOMEWORK

- **1.** Find the following square roots. If you can not find the number exactly, at least say between which two whole numbers the answer is, e.g., between 5 and 6.
 - (a) $\sqrt{16}$
 - (b) $\sqrt{81}$
 - (c) $\sqrt{10,000}$
 - (d) $\sqrt{10^8}$
 - (e) $\sqrt{50}$
- 2. Find the distance from the window to the ground h. Hint: use Pythagorean theorem.

- 3. If, in a right triangle, one leg has length 1 and the hypotenuse has length 2, what is the other leg?
- 4. Can you find a right triangle where all sides are whole numbers and the hypotenuse is 13?
- 5. Find
 - (a) $\sqrt{2^6 \times 7^2}$ (b) $\sqrt{\frac{1}{16}}$ (c) $\sqrt{\frac{4}{9}}$
- **6.** Find the height and area of the figure below. Lengths of three sides are given; the two marked angles are right angles.

- 7. The side of an equilateral triangle is 1 m. Find its height and the area.
- 8. Open parenthesis and simplify
 - (a) 3(a-5) 2(2a-9) =
 - (b) 12x 3x(x+4) =
 - (c) 5x 5(7 a + x) =
 - (d) 2a(a-2) a(a-1) =