1. Fill in the empty cell in the table:

dividend	a	29		46	94
divisor	b	7	9		9
quotient	c	4	7	3	
remainder	r		5	1	4

$$
a=b \cdot c+r
$$

2. One bottle can hold 5 liters of apple juice. How many 5 -liter bottles are needed to pour 47 liters of juice into them?
3. The sum of two natural number is 45 . First number gives a remainder of 4 when divided by 12 , the second gives a remainder 5 when divided by 12 . What are these numbers?
4. The sum of two natural number is 54 . First number gives a remainder of 11 when divided by 17 , the second gives a remainder 9 when divided by 17 . What are these numbers?
5. The sum of two natural number is 48 . First number gives a remainder of 14 when divided by 19 , the second gives a remainder 15 when divided by 19 . What are these numbers?
6. The sum of two numbers is 242 , and when the larger of these numbers is divided by the smaller one, the quotient is 4 , and the remainder is 22 . Find the smaller of these numbers.
7. The number a is even. Can the remainder of the division of the number a by 6 be equal to 1 ? 3 ?
8. When dividing a natural number, a by 2 , the remainder is 1 , and when dividing it by 3 , the remainder is 2 . What will be the remainder when a is divided by 6 ?

Exponent.

Exponentiation is a mathematical operation, written as a^{n}, involving two numbers, the base a and the exponent n. When n is a positive integer, exponentiation corresponds to repeated multiplication of the base. In other words, a^{n} is the product of multiplying n bases:

$$
a^{n}=\underbrace{a \cdot a \cdot a \ldots \cdot a}_{n \text { times }}
$$

In that case, a^{n} is called the n-th power of a, or a raised to the power n.
The exponent indicates how many copies of the base are multiplied together.

Properties of exponent.

Based on the definition of the exponent, a few properties can be derived.

$$
\begin{gathered}
a^{n} \cdot a^{m}=\underbrace{a \cdot a \cdot a}_{n \text { times }} \cdot \underbrace{a \cdot a \ldots \cdot a}_{m \text { times }}=\underbrace{a \cdot a \cdot a \ldots \cdot a}_{n+m \text { times }}=a^{n+m} \\
\left(a^{n}\right)^{m}=\underbrace{a^{n} \cdot a^{n} \cdot \ldots \cdot a^{n}}_{m \text { times }}=\underbrace{\underbrace{a \cdot a \cdot \ldots \cdot a}_{n \text { times }} \cdot \ldots \cdot \underbrace{a \cdot a \cdot \ldots \cdot a}_{n \text { times }}}_{m \text { times }}=a^{n \cdot m}
\end{gathered}
$$

If a number a in a power on n multiplied by the number a one more time, the total number of multiplied bases increased by 1 :
$a^{n} \cdot a=\underbrace{a \cdot a \cdot a \ldots \cdot a}_{n \text { times }} \cdot a=\underbrace{a \cdot a \cdot a \cdot a \ldots \cdot a}_{n+1 \text { times }}=a^{n+1}=a^{n} \cdot a^{1}$

In order to have the set of power properties consistent, any number in the first power is the number itself. In other words, $a^{1}=a$ for any number a.
Also, a^{n} can be multiplied by 1 :
$a^{n}=a^{n} \cdot 1=a^{n+0}=a^{n} \cdot a^{0}$

In order to have the set of properties of exponent consistent, $a^{0}=1$ for any number a, but 0 .
If there are two numbers a and b :

$$
\begin{gathered}
(a \cdot b)^{n}=\underbrace{(a \cdot b) \cdot \ldots \cdot(a \cdot b)}_{n \text { times }}=\underbrace{a \cdot \ldots \cdot a}_{n \text { times }} \cdot \underbrace{b \cdot \ldots \cdot b}_{n \text { times }} \\
=a^{n} \cdot b^{n}
\end{gathered}
$$

All these properties can be summarized:

1. $a^{n}=\underbrace{a \cdot a \cdot a \ldots \cdot a}_{n \text { times }}$
2. $a^{n} \cdot a^{m}=a^{n+m}$
3. $\left(a^{n}\right)^{m}=a^{n \cdot m}$
4. $a^{1}=a$, for any a
5. $a^{0}=1$, for any $a \neq 0$
6. $(a \cdot b)^{n}=a^{n} \cdot b^{n}$

Positive and negative numbers:

- A positive number raised into any power will result a positive number.
- A negative number, raised in a power, represented by an even number is positive, represented by an odd number is negative.

Exercises:

1. Continue the sequence:
a. 1, 4, 9, 16 ...
b. $1,8,27, \ldots$
c. $1,4,8,16$...
2. Write the following products as exponents:

Example:
$-2 \cdot 2 \cdot 2 \cdot 2=-2^{4} ; \quad(-2) \cdot(-2) \cdot(-2) \cdot(-2)=(-2)^{4}$
a. $(-3) \cdot(-3) \cdot(-3) \cdot(-3)$;
b. $(-5 m)(-5 m) \cdot 2 n \cdot 2 n \cdot 2 n$;
c. $-3 \cdot 3 \cdot 3 \cdot 3$;
d. $-5 m \cdot m \cdot 2 n \cdot n \cdot n$;
e. $(a b) \cdot(a b) \cdot(a b) \cdot(a b) \cdot(a b) \cdot(a b) ;$
f. $\quad-q \cdot q \cdot q \cdot q \cdot q ;$
g. $4 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7$;
h. $(p-q) \cdot(p-q) \cdot(p-q)$;
3. What digits should be put instead of * to get true equality? How many solutions does each problem have?
a. $(2 *)^{2}=* * 1$;
b. $(3 *)^{2}=* * * 6$
c. $(7 *)^{2}=* * * 5$
d. $(2 *)^{2}=* * 9$
4. Without doing calculations, prove that the following inequalities hold:

Example:

$$
\begin{array}{ll}
39^{2}<2000: & 39<40, \quad 39^{2}<40^{2}=1600 ; \quad 1600<2000 \\
\text { a. } 29^{2}<1000 ; & \text { b. } 48^{2}<3000 ; \quad \text { c. } 42^{2}>1500 ; \quad \text { d. } 67^{2}>3500
\end{array}
$$

5. Evaluate:

$$
(-3)^{2} ; \quad-3^{2} ; \quad(-3)^{3} ; \quad 2^{7} ; \quad(-2)^{7} ; \quad-2^{7} ; \quad(2 \cdot 3)^{3} ; \quad 2 \cdot 3^{3} ; \quad\left(\frac{1}{3}\right)^{2} ; \quad \frac{1}{3^{2}}
$$

