Math 4b.

Exponent

Exponentiation is a mathematical operation, written as a^{n}, involving two numbers, the base a and the exponent n. When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, a^{n} is the product of multiplying n bases:

$$
a^{n}=\underbrace{a \cdot a \cdot a \ldots \cdot a}_{n \text { times }}
$$

In that case, a^{n} is called the \boldsymbol{n}-th power of \boldsymbol{a}, or \boldsymbol{a} raised to the power \boldsymbol{n}. The exponent indicates how many copies of the base are multiplied together. For example, $3^{5}=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=243$. The base 3 appears 5 times in the repeated multiplication, because the exponent is 5 . Here, 3 is the base, 5 is the exponent, and 243 is the power or, more specifically, the fifth power of 3,3 raised to the fifth power, or 3 to the power of 5 .

Properties of exponent:

1. If the same base raised to the different power and then multiplied:
$4^{3} \cdot 4^{5}=(4 \cdot 4 \cdot 4) \cdot(4 \cdot 4 \cdot 4 \cdot 4 \cdot 4)=4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4=4^{8}=4^{3+5}$
Or in a more general way:
$a^{n} \cdot a^{m}=\underbrace{a \cdot a \cdot \ldots \cdot}_{n \text { times }} \cdot \underbrace{a \cdot a \ldots \cdot a}_{m \text { times }}=\underbrace{a \cdot a \cdot a \ldots \cdot a}_{n+\text { m times }}=a^{n+m}$
2. If the base raised to the power of n then raised again to the power of m :

$$
\begin{aligned}
\left(4^{3}\right)^{5}=\left(4^{3}\right) & \cdot\left(4^{3}\right) \cdot\left(4^{3}\right) \cdot\left(4^{3}\right) \cdot\left(4^{3}\right) \\
& =(4 \cdot 4 \cdot 4) \cdot(4 \cdot 4 \cdot 4)
\end{aligned}
$$

Or in a more general way:

$$
\left(a^{n}\right)^{m}=\underbrace{a^{n} \cdot a^{n} \cdot \ldots \cdot a^{n}}_{m \text { times }}=\underbrace{a \cdot a \cdot \ldots \cdot a}_{\text {ntimes }} \cdot \ldots \cdot \underbrace{a \cdot a \cdot \ldots \cdot a}_{n \text { times }}=a^{n \cdot m}
$$

Homework

1. Continue the sequence:
a. $1,4,9,16$...
b. $1,8,27, \ldots$
c. $1,4,8,16$...
2. Write the following numbers as a second power:

Example: $25=5^{2}$
$25,121,144,225$
3. Find x so that the expressions below are true.
a. $2^{x} \cdot 2^{x}=64$
b. $3^{x} \cdot 3^{x}=81$
4. Write the following expressions in a shorter way replacing product with power:

1) $a \cdot b \cdot b \cdot b \cdot b \cdot b=$
2) $3 m \cdot m \cdot m \cdot 2 k \cdot k \cdot k \cdot k=$
3) $(a b) \cdot(a b) \cdot(a b) \cdot(a b) \cdot(a b) \cdot(a b)=$
4) $2 n \cdot 2 n \cdot 2 n=$
5) $(5 m)(5 m) \cdot 2 n \cdot 2 n \cdot 2 n=$
6) $a \cdot b \cdot b \cdot b \cdot b \cdot b$
5. Write the number which extended form is written below:

Example: $2 \cdot 10^{3}+7 \cdot 10^{2}+2 \cdot 10+6=2726$;
a) $2 \cdot 10^{3}+4 \cdot 10^{2}+5 \cdot 10+8$;
b) $7 \cdot 10^{3}+2 \cdot 10^{2}+0 \cdot 10+1$;
c) $9 \cdot 10^{3}+3 \cdot 10+3$;
e) $4 \cdot 10^{3}+1 \cdot 10^{2}+1 \cdot 10+4$;
6. What should be the exponent for the equation to hold?

Example: $8^{*}=512$
Answer: $8^{3}=512$
a) $2^{*}=64$;
b) $3^{*}=81$;
c.) $7^{*}=343$
7. Come up with the problem about the distance between two objects, that can be solved by the formula, and solve it.
Example: $d=500-2.5(70+30)$
Problem: Two cities are 500 miles apart. A bus and a car started moving toward each other. Speed of the car is $70 \mathrm{~m} / \mathrm{h}$, speed of the bus is $30 \mathrm{~m} / \mathrm{h}$. What would be the distance between them in 2.5 hours?

$d=500-2.5(70+30)=500-2.5 \cdot 100=250$ miles

1) $d=18+(16+4) \cdot 3$
2) $d=96-4 \cdot(56-40)$
8. Mother is twice as old as her daughter. Father is 5 years older than mother. Together they are 120 years old. How old is father?
