MATH 10
 ASSIGNMENT 22: PERMUTATIONS

MARCH 24, 2024

A permutation of some set S is a function $f: S \rightarrow S$ which is a bijection (one-to-one and onto, or invertible). We will only be discussing permutations of finite sets, usually the set $S=\{1, \ldots, n\}$. In this case one can also think of a permutation as a way of permuting n items placed in boxes labeled $1, \ldots, n$: namely, move item from box 1 to box $f(1)$, item from box 2 to $f(2)$, etc. The set of all permutations of $\{1, \ldots, n\}$ is denoted by S_{n}.

Notation: the permutation f which sends 1 to $a_{1}, 2$ to a_{2}, etc, is usually written as

$$
\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right)
$$

An alternative way of describing a permutation is by using the notion of cycles. A cycle $\left(a_{1} a_{2} \ldots a_{k}\right)$ is a permutation which sends a_{1} to a_{2}, a_{2} to a_{3}, \ldots, a_{n} to a_{1} (and leaves all other elements unchanged). For example, (123) is the permutation such that $f(1)=2, f(2)=3, f(3)=1$ and $f(a)=a$ for all other a.

Permutations can be composed in the usual way: $f \circ g(x)=f(g(x))$. This operation is associative but in general not commutative: $f \circ g \neq g \circ f$.

1. How many permutations of the set $\{1, \ldots, n\}$ are there?
2. Compute the following compositions (a) (12) $\circ(13) \quad$ (b) $(12) \circ(23)$
(c) $(23) \circ(12)$
(d) $(12) \circ(13) \circ(12)$
(e) $(123) \circ(132)$
(f) $(38) \circ(123456) \circ(38)$
3. Find the inverse of permutation

$$
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 6 & 4 & 2 & 5
\end{array}\right)
$$

4. Show that for permutations s_{1}, s_{2} we have $\left(s_{1} s_{2}\right)^{-1}=s_{2}^{-1} s_{1}^{-1}$.
5. Fifteen students are meeting in a classroom which has 15 chairs numbered 1 through 15 . The teacher requires that every minute they change seats following this rule:
$\begin{array}{ccccccccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 3 & 5 & 10 & 8 & 11 & 14 & 15 & 6 & 13 & 1 & 4 & 9 & 7 & 2 & 12\end{array}$
(e.g., the student who was sitting in the chair number 1 would move to chair number 3).

In how many minutes will the students return to their original seats?
6. (a) Let a permutation f be a product of non-intersecting cycles of lengths $n_{1}, n_{2}, \ldots, n_{l}$ (in this case, we will say that it has the type $\left.\left\langle n_{1}, n_{2}, \ldots n_{l}\right\rangle\right)$. What is the order of f, i.e. the smallest d such that $f^{d}=i d$, where $i d$ is the identity permutation: $i d(a)=a$?
(b) Find permutations of the set $\{1, \ldots, 9\}$ which have orders $7,10,12,11$.
7. (a) Write the permutations in problems 3,4 as products of non-intersecting cycles.
(b) Show that any permutation can be written as a product of non-intersecting cycles.
8. A transposition is a permutation that exchanges two numbers, leaving all others in place - e.g. (12) or (57).
(a) Consider this sequence of numbers: $4,2,1,3,5,3$ (obviously, it is obtained from sequence $1,2,3,4,5$ by a permutation s)
Show how one can put them in a correct order by applying a sequence of transpositions, each exchanging two adjacent numbers.
(b) Show how one can write the permutation s of the previous part as a product of transpositions of the form $(i i+1)$.
(c) Show that any permutation can be written as a product of transpositions of the form $(i i+1)$.
9. (a) Write the permutation $\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right)$ as a product of transpositions of the form $(i i+1)$ in 2 different ways.
(b) Can you write it as a product of even number of transpositions?

