MATH 10

ASSIGNMENT 19: EULER'S FORMULA

MARCH 2, 2024

EULER'S FORMULA

Recall the series from last time:

$$
E(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

We have discussed that it has the following properties:

1. It converges for any $x \in \mathbb{R}$
2. $E(x) E(y)=E(x+y)$
3. $E(0)=1$
4. For small values of $x, E(x) \approx 1+x$

Thus, if we denote

$$
e=E(1)=\sum_{n=0}^{\infty} \frac{1}{n!} \approx 2.718281828 \ldots
$$

then one can show that $E(x)=e^{x}$ (for integer x, it easily follows from above properties. For other values, this is taken as definition of e^{x}.)

We can also consider $E(x)$ for complex values of x. In particular, if $x=i t, t$ is real, then we can show that $|E(i t)|=1$, so $E(i t)$ is on the unit circle (see problem 2 below). Moreover, we have the following formula:

Theorem (Euler's formula). If t is real, then

$$
E(i t)=e^{i t}=\cos t+i \sin t
$$

In particular, $e^{i \pi}=-1$.
Partial proof of this is given in problem 2 below.

Homework

1. For what values of x do the series below converge? [You can use results discussed last time - in particular, the comparison test and the ratio test.]
(a) $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$
(b) $1+\frac{x^{2}}{4}+\frac{x^{6}}{9}+\cdots+\frac{x^{2 n}}{n^{2}}+\ldots$
(c) $\sum \frac{(-1)^{n} x^{n}}{n(n+1)}$
2. Without using Euler formula, prove the following:
(a) For any complex $z, \overline{E(z)}=E(\bar{z})$.
(b) For real $t, \overline{E(i t)} \cdot E(i t)=1$, so $|E(i t)|=1$.
(c) Let $\varphi(t)=\arg (E(i t))$, where \arg is the argument (angle) of a complex number. Prove that $\varphi(0)=0, \varphi\left(t_{1}+t_{2}\right)=\varphi\left(t_{1}\right)+\varphi\left(t_{2}\right)$., and for small values of $t, \varphi(t) \approx t$.
(d) From the above, can you prove that $\varphi(t)=t$? This would show that $E(i t)$ is a complex number with magnitude 1 and argument t, i.e.

$$
E(i t)=\cos (t)+i \sin (t)
$$

which is exactly the Euler's formula.
3. Separating in Euler's formula real and imaginary parts, show that $\sin (x), \cos (x)$ can be written as series of the form $\sum a_{n} x^{n}$.
4. Use Euler's formula and identity $E(x) E(y)=E(x+y)$ to get formulas for $\sin (x+y), \cos (x+y)$ in terms of $\sin (x), \sin (y), \cos (x), \cos (y)$.
5. (a) It is known that the function $f(x)=\frac{1}{\cos x}$ can be written as a series $f(x)=1+a_{2} x^{2}+a_{4} x^{4}+\ldots$. Using the formula for $\cos (x)$ from Problem 3, can you find a_{2}, a_{4} ?
(b) Show that $\tan (x)=x+c_{3} x^{3}+c_{5} x^{5}+\ldots$. Find c_{3}, c_{5}
*6. It is known that $\sin (x)$ can also be written as the following infinite product:

$$
\sin (\pi x)=\pi x \prod_{1}^{\infty}\left(1-\frac{x^{2}}{n^{2}}\right)=\pi x\left(1-x^{2}\right)\left(1-\frac{x^{2}}{4}\right)\left(1-\frac{x^{2}}{9}\right) \ldots
$$

Comparing it with the series you got in problem 3, find the formula for $\sum \frac{1}{n^{2}}$ and $\sum \frac{1}{n^{4}}$ (hint: if you open all parentheses to rewrite the product as a sum, what will be the coefficient of x^{3} ? of x^{5} ?)

