
## The Most Powerful Volcanic Eruption of the 21<sup>st</sup> Century

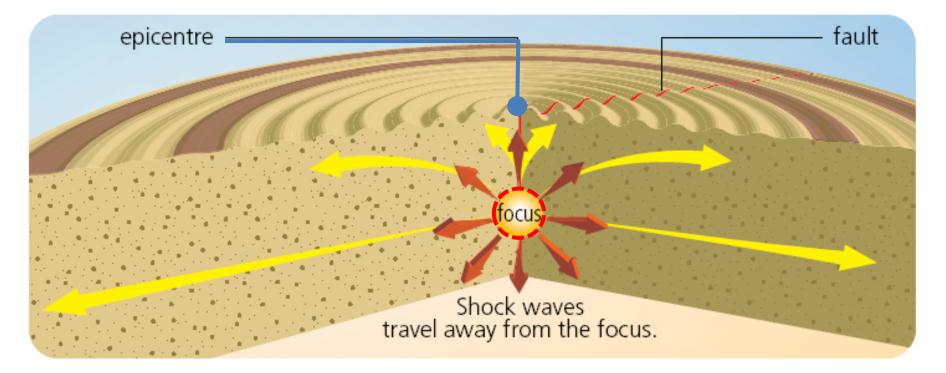
#### Hunga Tonga-Hunga Ha'apai, 14-15 January 2022





- Blast as powerful as Krakatoa - biggest boom ever recorded!
- Ejected ~2 mi<sup>3</sup> of material; generated an ash plume half the size of France.

# Earthquakes


# What is an earthquake?

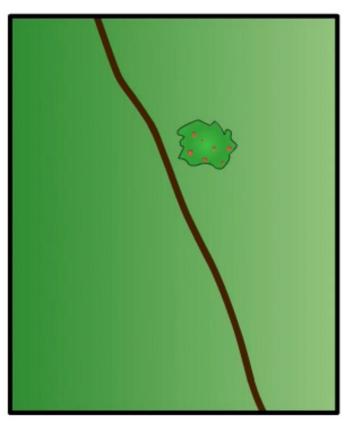
Earthquake is the vibration (shaking) and/or displacement of the ground produced by the sudden release of energy.

- Rocks under stress accumulate strain energy over time.
- Stress results from tectonic plate movement, magmatic or volcanic activity.
- When stress exceeds strength of rocks, rock breaks and slips.
- Rock slippage/rupture occurs at the <u>weakest point</u> (fault).
- Strain energy is released as seismic waves.

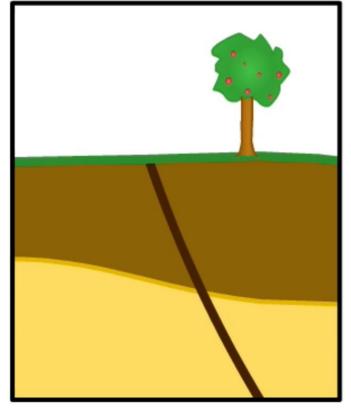


# **Focus and Epicenter**



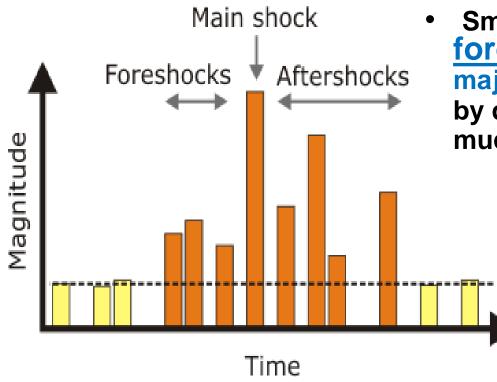

- Focus point <u>inside</u> the Earth <u>where an earthquake</u> <u>begins</u> (*point of initial rupture*). The majority of tectonic earthquakes originate in depths not exceeding tens of kilometers.
- Epicenter point <u>on the surface</u> of the Earth <u>directly</u> <u>above the focus</u> where the shaking is usually felt most strongly.

# Earthquakes often occur as a sequence rather than individual events


Foreshock

Mainshock

Aftershock




Map View



**Cross-Section View** 

## **Foreshocks and Aftershocks**



- Small earthquakes, called <u>foreshocks</u>, often precede a major earthquake (<u>main shock</u>) by days or, in some cases, by as much as several years.
  - Adjustments of crust (redistribution of stress on the fault) that follow a major earthquake often generate smaller quakes in the same area called <u>aftershocks</u>.
- *Bigger* earthquakes often have *more and larger* aftershocks and the sequences can last for years.
- Earthquake swarms are sequences of earthquakes striking in a specific area within a short period of time in which no single earthquake has notably higher magnitudes than the other.

## **Measuring Earthquakes**

<u>Two measurements</u> that describe the "power" or "strength" of an earthquake are:

- Intensity a measure of the degree of shaking at a given locale based on the amount of damage.
  - Richter Magnitude estimates the amount of energy released at the source of the earthquake:
  - Magnitude is a *logarithmic* scale (not linear!)
  - Magnitude <u>2 or lower</u> earthquakes <u>cannot be felt</u> by humans.
  - Magnitude <u>7 and over</u> potentially cause <u>serious damage over</u> <u>larger areas</u>, depending on their depth.
  - The largest earthquakes in historic times have been of magnitude slightly over 9, although there is no limit to the possible magnitude.

## Modified Mercalli Scale vs. Richter Scale

| Intensity<br>category | Effects                                                                                                                                           | Magnitude<br>scale |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| I. Instrumental       | Not felt                                                                                                                                          | 1-2                |
| II. Just perceptible  | Felt by only a few people, especially on upper floors of tall buildings                                                                           | 3                  |
| III. Slight           | Felt by people lying down, seated on a hard surface, or in the upper stories of tall buildings                                                    | 3.5                |
| IV. Perceptible       | Felt indoors by many, by few outside; dishes and windows rattle                                                                                   | 4                  |
| V. Rather strong      | Generally felt by everyone; sleeping people may be awakened                                                                                       | 4.5                |
| VI. Strong            | Trees sway, chandeliers swing, bells ring, some damage from falling objects                                                                       | 5                  |
| VII. Very strong      | General alarm; walls and plaster crack                                                                                                            | 5.5                |
| VIII. Destructive     | Felt in moving vehicles; chimneys collapse;<br>poorly constructed buildings seriously damaged                                                     | 6                  |
| IX. Ruinous           | Some houses collapse; pipes break                                                                                                                 | 6.5                |
| X. Disastrous         | Obvious ground cracks; railroad tracks bent;<br>some landslides on steep hillsides                                                                | 7                  |
| XI. Very disastrous   | rous Few buildings survive; bridges damaged or destroyed;<br>all services interrupted (electrical, water,<br>sewage, railroad); severe landslides |                    |
| XII. Catastrophic     | Total destruction; objects thrown into the air;<br>river courses and topography altered                                                           | 8 +                |

## Earthquake Magnitude and Energy Equivalence

|      | Earthquake<br>Magnitude | Energy Released <sup>*</sup><br>(Millions of Ergs)      | Approximate Energy<br>Equivalence                                                       |
|------|-------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------|
| bare | 0<br>1                  | 630,000<br>20,000,000                                   | 1 pound of explosives                                                                   |
|      | elv <sup>2</sup>        | 630,000,000                                             | Energy of lightning bolt                                                                |
| fe   |                         | 20,000,000,000<br>630,000,000,000<br>20,000,000,000,000 | 1000 pounds of explosives                                                               |
|      | 6                       | 630,000,000,000,000                                     | 1946 Bikini atomic bomb test<br>1994 Northridge Earthquake                              |
|      | 7                       | 20,000,000,000,000,000                                  | 1989 Loma Prieta Earthquake                                                             |
|      | 8                       | 630,000,000,000,000,000                                 | 1906 San Francisco Earthquake                                                           |
|      | 9                       | 20,000,000,000,000,000,000                              | 1980 Eruption of Mount St. Helens<br>1964 Alaskan Earthquake<br>1960 Chilean Earthquake |
|      | 10                      | 630,000,000,000,000,000,000                             | Annual U.S. energy consumption                                                          |

One unit of magnitude increase corresponds to ~10-fold increase in intensity and ~30-fold increase in energy.