Gravitational Pull of the Moon and Sun

The relationship between the masses of the Earth, Moon and Sun and their distances to each other play a critical role in affecting the Earth's tides.

- The Sun is 27 million times more massive than the Moon.
- It is also $\mathbf{3 9 0}$ times further away from the Earth than the Moon.

- As a result, the Sun's tide-generating force is about half that of the Moon.

$$
\underset{\text { Force }}{\text { Tide-Generating }} \sim \underset{(\text { Distance })^{3}}{ } \frac{\text { Mass }}{\text { Man }}
$$

The Moon is the dominant force affecting the Earth's tides.

Tide-Generating Force

For any two massive bodies rotating around the common center, let's consider the following two forces:

1. Gravitational pull (varies with distance) 2. Apparent centrifugal force (same everywhere)

Tidegenerating force results from their difference

(and is called a
differential force)

Tidal Bulges

gravitational attraction of the Moon dominates on the near side \downarrow

-two tidal bulges of water

The Sun has a similar effect, however $\boldsymbol{\sim} \mathbf{2}$ times smaller.

Monthly Tidal Cycle (29½ days)

 About every 7 days, Earth alternates between:
Spring Tide

Alignment of Earth-Moon-Sun system (syzygy)

First-quarter
moon
Neap Tide

Spring Tide
large tidal range, highest high tide and lowest low tide

Neap Tide moderate tidal range

Earth-Moon-Sun system at right angles (quadrature)

Types of Tides depend strongly on the location and shoreline

- Di̊urnal: one tidal cycle per day (Gulf of Mexico)
- Semi-diurnal: two high waters and two low waters each day (Boston, MA)
- Mixed: two high and two low waters each day, all four with different heights (Los Angeles, CA).

