Ν	ar	n	e
11	aı		C.

electron

loss

electron

gain

ion

Counting Subatomic Particles using Net Charge

Define: lon _____

Unbonded atoms generally have an overall net electrical charge of zero, meaning that the number of protons equals the number of electrons. Unless otherwise stated, you can assume that the word "ATOM" means a ______ atom.

Example: Hydrogen

- How many protons does an atom of hydrogen have? _____ What is the overall charge of the nucleus? _____p⁺
- Using this you can figure out how many electrons a NEUTRAL atom of Hydrogen must have.

Example: If a NEUTRAL Oxygen atom has 8 protons, how many electrons does it have?_____

When atoms form bonds, which we will talk about in detail in Unit 3, electrons are either shared or transferred between atoms. This changes the overall number of electrons which has an impact on net charge.

When an atom has a net charge NOT equal to zero, it is called an ______.

Example: When forming bonds, Oxygen often gains two more electrons. What is the overall net charge for this _____?

Visually

Net Charge = _____

Ionic Notation: _____

Mathematically

Net Charge = Number of Protons (+1) + Number of Electrons (-1)

Net Charge = ____(+1) + ____(-1)

Quick Method

- Which particle do you have more of? ______
- This means that your charge will be ______
- How many more of these particles are there? _____

Final Charge =

Practice - How many protons and electrons are there in an atom of Lithium with a +1 charge?

____p⁺

_____e^{_}

Summary

- A <u>Neutral</u> atom has the same number of ______ and ______. •
- If an atom gains or loses electrons, it is called an ______. •
- If an atom <u>Gains electrons</u>, it will have a ______ net charge (more______ than____)
 If an atom <u>Loses electrons</u>, it will have a ______ net charge (more______ than____)
- - Remember the number of ______ will NEVER change!

Ionic Bohr Diagrams

Directions Individually, or in your groups, complete the following chart questions. Whatever is not completed in class will be homework. Feel free to show any work or draw diagrams on loose leaf.

Element	Atomic Symbol	Atomic Number	Number of Protons	Number of Electrons	Net Charge	lonic Notation
Sulfur					-2	
	K			21		
		19			0	
Iron					+2	
	Fe					Fe ⁺³

	29	30		
Chlorine				Cl ⁻¹
		13	0	

Challenge: Complete the following Chart

Element	Atomic Symbol	Atomic Number	p⁺	n ⁰	e⁻	Mass Number	Net Charge	Notation
		7		7			0	
	Mg				10	24		