Counting Subatomic Particles using Mass Number

Definitions

- i. Atomic Number
- ii. Element
- iii. Mass Number

Example 1: How many ______ are in an atom of <u>Carbon</u> if the mass number is _____? According to Periodic Table, Carbon's atomic number is _____. This is equal to the number of

Example 2: Identify the element that has an atom with a mass number of _____ and _____ neutrons.

Nuclear Symbols are a quick and easy way to record the element, number protons, and mass numbers.

What are the nuclear symbols for examples 1 and 2 on the front of this worksheet? Example 1: Example 2:

Practice

Directions Individually, or in your groups, complete the following chart and questions

Element	Atomic Symbol	Atomic Number	Number of Protons	Number of Neutrons	Mass Number	Nuclear Symbol
Hydrogen					3	
	N			8		
			15		32	
		5		6		
Boron					10	

1. Determine the total number of neutrons in an atom of Si with a mass of 29amu. <u>Show your work for full credit.</u>

2. The nucleus of an atom of Gold-198 has _____ protons and _____ neutrons.

3. What is the mass number of an atom with 7 protons, 8 neutrons, and 7 electrons?

4. State, in terms of <u>subatomic particles</u> (protons, neutrons, & electrons), how an atom of Carbon with a mass of 13amu is different from an atom of Carbon with a mass of 12amu.

<u>Isotopes</u>
In other words, atoms with the same number of, but with a different number of