MATH CLUB ASSIGNMENT 4: COMBINATORICS 2

OCT 22, 2023

1. How many "words" of length 12 can you form using just 2 letters, A and B, if each letter must appear 6 times? What if you are allowed to use 3 letters, A, B, C, each appearing 4 times? Can you get a general formula for number of words using 3 letters, appearing k_{1}, k_{2}, k_{3} times respectively (thus, total length is $\left.n=k_{1}+k_{2}+k_{3}\right)$?
2. An ant moves along the real line, starting at the origin and each time moving one unit either to the left or to the right. He takes $2 n$ steps and ends up again at the origin
(a) Show that the number of such paths is equal to the constant term in the expression $\left(x+x^{-1}\right)^{2 n}$.
(b) Show that this number is equal to ${ }_{2 n} C_{n}$.
3. An ant moves in the plane, starting at the origin and each time moving one unit to the left or to the right or up or down. He takes $2 n$ steps and ends up again at the origin.
(a) Show that the number of such paths is equal to the constant term in the expression $\left(x+x^{-1}+y+y^{-1}\right)^{2 n}$.
*(b) Prove that this number is equal to $\left({ }_{2 n} C_{n}\right)^{2}$. (Hint: rotate the plane 45 degrees. Then each ant's step moves him both horizontally and vertically.)

Stars and Bars

4. How many ways there are to arrange 12 books on 2 bookshelves (top and bottom one)? The order on each bookshelf matters; there are no restrictions on how many of the 12 books are on top shelf.
5. How many solutions does the equation $x_{1}+x_{2}+x_{3}=2023$ have if x_{1}, x_{2}, x_{3} must be non-negative integers? what if we require them to be positive integers?
6. How many different monomials in 3 variables x, y, z of total degree n are there? in 4 variables?
7. How many different monomials in 3 variables x, y, z of total degree n are there if we additionally require that each variable appears with positive degree (i.e. we look for monomials $x^{a} y^{b} z^{c}, a>0$, $b>0, c>0, a+b+c=n)$.
8. How many ways there are to put 15 chairs in 4 rooms if every room must have at least one chair? (Chairs are all identical, chairs inside the room are not ordered.)
*9. How many ways there are to put 15 people in 4 rooms if every room must have at least one person? (People are all different, people inside the room are not ordered.)
